Skip to main content

Evolution of the Human Digital Representation in Manufacturing Production Systems

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future (SOHOMA 2021)

Abstract

The fourth industrial revolution has brought significant changes to the economic and societal world. In the manufacturing context, this revolution allows improving the efficiency and productivity of manufacturing operations through the deployment of technological advances. One of the main concerns of society is the human well-being in the workplace environment. Despite the advances in the manufacturing domain, humans will continue to have certain levels of involvement in manufacturing operations. Still, for an adequate human-system synchronization, it is needed to understand the human representation, interaction, and contribution on advanced manufacturing systems, without threatening the human well-being. For this reason, this paper reviews the role of the human operator, examining the representation, interaction, involvement, and capabilities of the human in manufacturing systems. This exploratory research analyses the evolution of the human operator, considering the type of human inclusion, the human/virtual-environment communication, the human factors indicators, the virtual representation, the purpose of the virtual representation and the devices/measurements of human factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matt, C., Hess, T., Benlian, A.: Digital transformation strategies. Bus. Inf. Syst. Eng. 57, 339–343 (2015). https://doi.org/10.1007/s12599-015-0401-5

    Article  Google Scholar 

  2. Kagermann, H., Hellinger, W.: Recommendations for implementing the strategic initiative industrie 4.0: securing the future of German manufacturing industry. Final Report of the Industrie 4.0 Working Group, Forschungsunion (2013)

    Google Scholar 

  3. Alcácer, V., Cruz-Machado, V.: Scanning the industry 4.0: a literature review on technologies for manufacturing systems. Eng. Sci. Technol. 22 (2019)

    Google Scholar 

  4. Dalenogare L., Benitez G., Ayala N., Frank A.: The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 204, 383–394 (2018)

    Google Scholar 

  5. Bonekamp, L., Sure, M.: Consequences of industry 4.0 on human labour and work organisation. J. Bus. Media Psychol. 6(1), 33–40 (2015)

    Google Scholar 

  6. Karacay G.: Talent development for industry 4.0. In: Industry 4.0: Managing the Digital Transformation. Springer Series in Advanced Manufacturing. Springer, Cham (2018)

    Google Scholar 

  7. Romero, D., Bernus, P., Noran, O., Stahre, J., Fast-Berglund, Å.: The operator 4.0: human cyber-physical systems & adaptive automation towards human- automation symbiosis work systems. In: Nääs, I., et al. (eds.) Advances in Production Management Systems. Initiatives for a Sustainable World. APMS 2016. IFIP Advances in Information and Communication Technology, vol 488. Springer, Cham (2016)

    Google Scholar 

  8. Peruzzini M., Grandi F., Pellicciari M.: Exploring the potential of operator 4.0 interface and monitoring, Compute. Ind. Eng. 139, 105600, ISSN 0360-8352 (2020)

    Google Scholar 

  9. Peruzzini, M., Pellicciari, M., Grandi, F., Andrisano, A.O.: A multimodal virtual reality set-up for human-centered design of industrial workstations. Dyna (Spain) 94(2), 182–188 (2019)

    Article  Google Scholar 

  10. Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. SME Manuf. Lett. 3 (2015). https://doi.org/10.1016/j.mfglet.2014.12.001

  11. Cardin, O.: Classification of cyber-physical production systems applications: proposition of an analysis framework. Compute. Ind. 104, 11–21, ISSN 0166-3615 (2019). https://doi.org/10.1016/j.compind.2018.10.002

  12. Marques Rocha, F., de Oliveira, F., Polezi, K., Munhoz, I., Akkari, A.: Industry 4.0: technology mapping and the importance of cognitive ergonomics. Int. J. Adv. Eng. Manage. Sci. 5(5), 296–303, ISSN: 2454-1311 (2019)

    Google Scholar 

  13. Trentesaux, D.: Distributed control of production systems. Eng. Appl. Artif. Intell. 22(7), 971–978 (2009)

    Article  Google Scholar 

  14. Okuda, Y., Nakamura, Y., Kishi, M., Ishikawa, N., Hitomi, M.: Simulation of human-oriented production systems considering workers’ cooperation. In: 8th IEEE International Workshop on Robot and Human Interaction. RO-MAN'99 (Cat. No. 99TH8483), pp. 381–386. IEEE (1999)

    Google Scholar 

  15. Ketan, H. S., Zuheri, A. K.: Simulation and optimization of manual workstation design using 23 factorial design. https://www.researchgate.net/publication/288310551_Simulation_and_optimization_of_manual_workstation_design_using_2_3_factorial_design

  16. Kotak, D., Wu, S., Fleetwood, M., Tamoto, H.: Agent-based holonic design and operations environment for distributed manufacturing. Comput. Ind. 52(2), 95–108 (2003)

    Article  Google Scholar 

  17. Agnello, P., Ansaldi, S.M., Bragatto, P.A.: Plugging the gap between safety documents and workers perception, to prevent accidents at Seveso establishments. In: 5th International Conference on Safety and Environment in the Process, vol. 26 (2012). https://doi.org/10.3303/CET1226049

  18. Budziszewski, P., Grabowski, A., Milanowicz, M., Jankowski, J., Dzwiarek, M.: Designing a workplace for workers with motion disability with computer simulation and virtual reality techniques. Int. J. Disabil. Human Dev. 10(4) (2011). https://doi.org/10.1515/IJDHD.2011.054

  19. Gamlin, A., Breedon, P., Medjdoub, B.: Immersive virtual reality deployment in a lean manufacturing environment. In: 2014 International Conference on Interactive Technologies and Games, pp. 51–58. IEEE (2014)

    Google Scholar 

  20. Gao, Y., Duan, H.: A survey of the virtual rebuilding of manufacturing process based on virtual and reality technologies. In: Anti-counterfeiting, Security, and Identification, pp. 1–5. IEEE (2012)

    Google Scholar 

  21. Angelopoulou, A., Mykoniatis, K., Boyapati, N.R.: Industry 4.0: the use of simulation for human reliability assessment. Procedia Manuf. 42, 296–301 (2020)

    Article  Google Scholar 

  22. Berdal, Q., Pacaux-Lemoine, M.P., Trentesaux, D., Chauvin, C.: Human-machine cooperation in self-organized production systems: a point of view. In: Service Orientation in Holonic and Multi-Agent Manufacturing. SOHOMA 2018, vol. 803. Studies in Computational Intelligence, Springer, Cham (2019)

    Google Scholar 

  23. Havard, V., Jeanne, B., Lacomblez, M., Baudry, D.: Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations. Prod. Manuf. Res. 7(1), 472–489 (2019)

    Google Scholar 

  24. Buxbaum, H., Kleutges, M., Sen, S.: Full-scope simulation of human-robot interaction in manufacturing systems. In: 2018 Winter Simulation Conference (WSC), pp. 3299–3307. IEEE (2018)

    Google Scholar 

  25. Florea, A., Lobov, A., Lanz, M.: Emotions-aware Digital Twins for manufacturing. Procedia Manuf. 51, 605–612 (2020)

    Article  Google Scholar 

  26. Nikolakis, N., Alexopoulos, K., Xanthakis, E., Chryssolouris, G.: The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. Int. J. Comput. Integr. Manuf. 32(1), 1–12 (2019)

    Article  Google Scholar 

  27. Fan, C.F., Chan, C.C., Yu, H.Y., Yih, S.: A simulation platform for human- machine interaction safety analysis of cyber-physical systems. Int. J. Ind. Ergon. 68, 89–100 (2018)

    Article  Google Scholar 

  28. Nikolakis, N., Maratos, V., Makris, S.: A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace. Robotics Comput.-Integr. Manuf. 56, 233–243 (2019)

    Article  Google Scholar 

  29. Ostanin, M., Yagfarov, R., Klimchik, A.: Interactive robots control using mixed reality. IFAC-PapersOnLine 52(13), 695–700 (2019)

    Article  Google Scholar 

  30. Rahman, S.M.: Cognitive cyber-physical system (C-CPS) for human- robot collaborative manufacturing. In: 2019 14th Annual Conference System of Systems Engineering (SoSE), pp. 125–130. IEEE (2019)

    Google Scholar 

  31. Rajnathsing, H., Li, C.: A neural network-based monitoring system for safety in shared work-space human-robot collaboration. Ind. Robot 45(7) (2018). https://doi.org/10.1108/IR-04-2018-0079

  32. Capunaman, O.B.: CAM as a tool for creative expression-informing digital fabrication through human interaction, Anthropocene, design in the age of humans. In: 25th CAADRIA Conference, pp. 243–252 (2020)

    Google Scholar 

  33. Hänggi, R., Nyffenegger, F., Ehrig, F., Jaeschke, P., Bernhardsgrütter, R.: Smart learning factory–network approach for learning and transfer in a digital & physical set up. In: IFIP International Conference on Product Lifecycle Management, pp. 15–25, Springer, Cham, July 2020

    Google Scholar 

  34. Peruzzini, M., Grandi, F., Pellicciari, M.: How to analyse the workers’ experience in integrated product-process design. J. Ind. Inform. Integr. 12 (2018)

    Google Scholar 

  35. Gavriushenko, M., Kaikova, O., Terziyan, V.: Bridging human and machine learning for the needs of collective intelligence development. Procedia Manuf. 42, 302–306 (2020)

    Article  Google Scholar 

  36. Michalos, G., Karvouniari, A., Dimitropoulos, N., Togias, T., Makris, S.: Workplace analysis and design using virtual reality techniques. CIRP Ann. 67(1), 141–144 (2018)

    Article  Google Scholar 

  37. Fernández, F., Sánchez, Á., Vélez, J.F., Moreno, A.B.: Symbiotic autonomous systems with consciousness using Digital Twins. In: International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 23–32. Springer, Cham (2019)

    Google Scholar 

  38. Homola, J., Martin, L., Mercer, J., Prevot, T.: Exploring workload factors across future environments. In: Proceedings of the International Conference on Human-Computer Interaction in Aerospace, pp. 1–8 (2014)

    Google Scholar 

  39. Monteil, N.R., del Rio Vilas, D., Pereira, D.C., Prado, R.: An overall DHM- based ergonomic and operational assessment of a manufacturing task: a case study. In: Modelling and Applied Simulation, International Conference on, pp. 375–382 (2011)

    Google Scholar 

  40. Rebmann, A., Knoch, S., Emrich, A., Fettke, P., Loos, P.: A multi-sensor approach for Digital Twins of manual assembly and commissioning. Procedia Manuf. 51, 549–556 (2020)

    Article  Google Scholar 

  41. Rocha, C.A.P., Rauch, E., Vaimel, T., Garcia, M.A.R., Vidoni, R.: Implementation of a vision-based worker assistance system in assembly: a case study. Procedia CIRP 96, 295–300 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the project ID-9389 and the proposal ID 9022 of the Pontificia Universidad Javeriana, with the title “Diseño e implementación de una arquitectura de un sistema ciber-físico de producción centrado en el humano”. This project is supported by the Ministry of Science, Technology and Innovation of Colombia under the resolution 0456 of May 5, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica-Juliana Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perez, MJ., Meza, SM., Bravo, FA., Trentesaux, D., Jimenez, JF. (2022). Evolution of the Human Digital Representation in Manufacturing Production Systems. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Joblot, L. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2021. Studies in Computational Intelligence, vol 1034. Springer, Cham. https://doi.org/10.1007/978-3-030-99108-1_15

Download citation

Publish with us

Policies and ethics