Skip to main content

Detecting Bed Occupancy Using Thermal Sensing Technology: A Feasibility Study

  • Conference paper
  • First Online:
Pervasive Computing Technologies for Healthcare (PH 2021)

Abstract

Measures of sleep and its disturbances can be detected by monitoring bed occupancy. These measures can also be used for alerting of bed exits or for determining sleep quality. This paper introduces an unobtrusive approach to detecting bed occupancy using low resolution thermal sensing technology. Thermal sensors operate regardless of lighting conditions and offer a high level of privacy making them ideal for the bedroom environment. The optimum bed occupancy detection algorithm was determined and tested on over 55,000 frames of 32 × 32 thermal sensor data. The developed solution to detect bed occupancy achieved an accuracy of 0.997. In this approach the location of the bed and the location of the participant is considered by classification rules to determine bed occupancy. The approach was evaluated using thermal sensor and bed pressure sensor data. Future work will focus on automatic detection of the bed location and improving the system by further reducing the false positives caused from residual heat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guarnieri, B., Sorbi, S.: Sleep and cognitive decline: a strong bidirectional relationship. It is time for specific recommendations on routine assessment and the management of sleep disorders in patients with mild cognitive impairment and dementia. Eur. Neurol. 74, 43–48 (2015)

    Article  Google Scholar 

  2. Ooms, S., Ju, Y.: Treatment of sleep disorders in dementia. Curr. Treat Options Neurol. 18, 18–40 (2016)

    Article  Google Scholar 

  3. Murthy, J., et al.: Thermal infrared imaging: a novel method to monitor airflow during polysomnography. Sleep 32(11), 1521–1527 (2009)

    Article  Google Scholar 

  4. Scott, J., et al.: Can consumer grade activity devices replace research grade actiwatches in youth mental health settings? Sleep Biol. Rhythms 17, 223–232 (2019)

    Article  Google Scholar 

  5. Fitbit, Fitbit Inspire and Fitbit inspire HR Health and Fitness Trackers. https://www.fitbit.com/uk/shop/inspire. Accessed 10 May 2019

  6. Apple, Sleep Time: Cycle Alarm Timer. https://apps.apple.come/us/sleep-time-cycle-alarm-timer/id555564825. Accessed 15 Jun 2020

  7. Withings, Sleep Tracking Mat. www.withings.com/us/en/sleep. Accessed 20 Jun 2019

  8. Pouliot, M., et al.: Bed occupancy monitoring: data processing and clinician user interface design. In: IEEE EMBS Proceedings, pp. 5810–5814 (2012)

    Google Scholar 

  9. Taylor, M., et al.: Bed occupancy measurements using under mattress pressure sensors for long term monitoring of community-dwelling older adults. In: IEEE MeMeA 2013 Proceedings, pp. 130–134 (2013)

    Google Scholar 

  10. Umlauf, M.J., et al.: Obstructive sleep apnea, nocturia and polyuria in older adults. Sleep 27(1), 139–144 (2004)

    Article  Google Scholar 

  11. Popescu, M.: Early illness detection in elderly using sensor networks: a review of the TigerPlace experience. In: IEEE EHB 2015 Proceedings, pp. 1–6 (2015)

    Google Scholar 

  12. Marino, M., et al.: Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep 36(11), 1747–1755 (2013)

    Article  Google Scholar 

  13. Liu, W., et al.: In bed with technology: challenges and opportunities for sleep tracking. In: OzCHI 2015 Proceedings, pp. 142–151 (2015)

    Google Scholar 

  14. Pan, Q., et al.: Current status and future challenges of sleep monitoring systems: systematic review. JMIR Biomed. Eng. 5(1), e20921 (2020)

    Article  Google Scholar 

  15. Enomoto, M., et al.: Newly developed waist actigraphy and its sleep/wake scoring algorithm. Sleep Biol. Rhythms 7, 17–22 (2009)

    Article  Google Scholar 

  16. Oguntala, G., et al.: Unobtrusive mobile approach to patient location and orientation recognition for elderly care homes. In: IWCMC 2017 Proceedings, pp. 1517–1521 (2017)

    Google Scholar 

  17. Nam, Y., et al.: Sleep monitoring based on a tri-axial accelerometer and a pressure sensor. Sensors 16(5), 1–14 (2016)

    Article  Google Scholar 

  18. Jones, M., et al.: Identifying movement onset times for a bed-based pressure sensor array. In: MeMeA 2006 Proceedings, pp. 111–114 (2006)

    Google Scholar 

  19. Liao, W.-H., Yang, C.-M.: Video-based activity and movement pattern analysis in overnight sleep studies. In: Pattern Recognition Proceedings, pp. 1–4 (2008)

    Google Scholar 

  20. Eldib, M., Deboeverie, F., Philips, W., Aghajan, H.: Sleep analysis for elderly care using a low-resolution visual sensor network. In: Salah, A.A., Kröse, B.J.A., Cook, D.J. (eds.) HBU 2015. LNCS, vol. 9277, pp. 26–38. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24195-1_3

    Chapter  Google Scholar 

  21. Seba, D., et al.: Thermal-signature-based sleep analysis sensor. Informatics 4(4), 37 (2017)

    Article  Google Scholar 

  22. Madrid-Navarro, C., et al.: Validation of a device for the ambulatory monitoring of sleep patterns: a pilot study on Parkinson’s disease. Front. Neurol. 10, 1–15 (2019)

    Article  Google Scholar 

  23. Tamura, T., et al.: Monitoring bed temperature in elderly in the home [ECG/body movements]. In: IEEE EMBS 1996 Proceedings, pp. 57–58 (1996)

    Google Scholar 

  24. Shetty, A., et al.: Detection and tracking of a human using the infrared thermopile array sensor - ‘Grid-EYE’. In: ICICICT 2017 Proceedings, pp. 1490–1495 (2017)

    Google Scholar 

  25. Taha, A., et al.: Design of an occupancy monitoring unit: a thermal imaging-based people counting solution for socio-technical energy saving systems in hospitals. In: CEEC 2019 Proceedings, pp. 1–6 (2019)

    Google Scholar 

  26. Liang, Q., et al.: Activity recognition based on thermopile imaging array sensor. In: IEEE EIT 2018 Proceedings, pp. 770–773 (2018)

    Google Scholar 

  27. Synnott, J., et al.: Detection of workplace sedentary behavior using thermal sensors. In: IEEE EMBS 2016 Proceedings, pp. 5413–5416 (2016)

    Google Scholar 

  28. Burns, M., et al.: Fusing thermopile infrared sensor data for single component activity recognition within a smart environment. Sens. Actuator Netw. 8(1), 1–16 (2019)

    Google Scholar 

  29. Taniguchi, Y., et al.: Estimation of human posture by multi thermal array sensors. In: IEEE SMC 2014 Proceedings, pp. 3930–3935 (2014)

    Google Scholar 

  30. Taniguchi, Y., et al.: A falling detection system with plural thermal array sensors. In: SCIS 2014 Proceedings, pp. 673–678 (2014)

    Google Scholar 

  31. Asbjørn, D., Jim, T.: Recognizing bedside events using thermal and ultrasonic readings. Sensors 17(6), 1342 (2017). (Switzerland)

    Article  Google Scholar 

  32. Larson, E., et al.: HeatWave: thermal imaging for surface user interaction. In: CHI 2011 Proceedings, pp. 2565–2574 (2011)

    Google Scholar 

  33. Lee, K., Lee, S.H., Park, J.-I.: Hands-free interface using breath residual heat. In: Yamamoto, S., Mori, H. (eds.) HIMI 2018. LNCS, vol. 10904, pp. 204–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92043-6_18

    Chapter  Google Scholar 

  34. Kuki, M., et al.: Multi-human locating in real environment by thermal sensor. In: IEEE SMC 2013, no. 2, pp. 4623–4628 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Hand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hand, R., Cleland, I., Nugent, C., Synnott, J. (2022). Detecting Bed Occupancy Using Thermal Sensing Technology: A Feasibility Study. In: Lewy, H., Barkan, R. (eds) Pervasive Computing Technologies for Healthcare. PH 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-030-99194-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99194-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99193-7

  • Online ISBN: 978-3-030-99194-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics