Skip to main content

Automatic Classification of Diabetic Retinopathy Through Segmentation Using CNN

  • Conference paper
  • First Online:
IoT Technologies for Health Care (HealthyIoT 2021)

Abstract

The process division of Diabetes Retinopathy (DR) has been considered as a significant step in diabetic retinopathy assessment and treatment. Different levels of microstructures like microaneurysm, rough exudates as well as neovascularization could take place on the retina area due to disruption to the retinal blood vessels triggered by elevated blood glucose levels. This is one of the primary causes of the prevalent visual impairment/blindness due to diabetes. Image segmentation, region merging, and Convolutional Neural Network (CNN) used in the paper for automated classification of high-resolution photographs of the retinal fundus in five stages of the DR. High heterogeneity is a significant problem for fundus image recognition for diabetic retinopathy, whereby new blood vessel proliferation including retinal detachment occurs. Therefore, careful examination of the retinal vessels is important to obtain accurate results which, through retinal segmentation could be achieved. We also highlight the difficulties in the development and learning of powerful, efficient, and reliable deep learning models for different DR diagnostic problems. The system was able to classify various DR stages with an average accuracy of around 94.2%, a sensitivity of 97%, and a specificity of 96%. There appears to be a genuine necessity for a steady interpretable classification system for DR and diabetic macular edema supported with solid confirmation. The suggested interpretable categorization systems allow diabetic retinopathy and macular edema to be properly classified. These technologies are expected to be beneficial in increasing diabetes screening and communication and discussion among those who care for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qureshi, I., Ma, J., Abbas, Q.: Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry 11, 749, (2019)

    Google Scholar 

  2. Liew, G., Michaelides, M., Bunce, C.: A comparison of the causes of blindness certifications in England and Wales in working-age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open 4, e004015 (2014)

    Google Scholar 

  3. Fenner, B.J., Wong, R.L., Lam, W.C., Tan, G.S., Cheung, G.C.: Advances in retinal imaging and applications in diabetic retinopathy screening: a review. Ophthalmol. Therapy 7(2), 333–346 (2018)

    Article  Google Scholar 

  4. Li, X., Li, X.: The antidepressant effect of light therapy from retinal projections. Neurosci. Bull. 34(2), 359–368 (2018)

    Article  Google Scholar 

  5. Shi, L., Wu, H., Dong, J., Jiang, K., Lu, X., Shi, J.: Telemedicine for detecting diabetic retinopathy: a systematic review and meta-analysis. Br. J. Ophthalmol. 99(6), 823–831 (2015)

    Article  Google Scholar 

  6. Bourne, R.R., et al.: Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob. Health 1(6), 339–349 (2013)

    Article  Google Scholar 

  7. Chakrabarti, R., Harper, C.A., Keeffe, J.E.: Diabetic retinopathy management guidelines. Exp. Rev. Ophthal. 7(5), 417–439 (2012)

    Article  Google Scholar 

  8. Salz, D.A., Witkin, A.J.: Imaging in diabetic retinopathy. Middle East Afr. J. Ophthalmol. 22(2), 145 (2015)

    Article  Google Scholar 

  9. Bawankar, P., et al.: Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR algorithm—comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy. PLoS ONE 12(12), e0189854 (2017)

    Google Scholar 

  10. Vo, H.H., Verma, A.: Discriminant color texture descriptors for diabetic retinopathy recognition. In: 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP) 8 September 2016, pp. 309–315. IEEE (2016)

    Google Scholar 

  11. Gupta, G., Kulasekaran, S., Ram, K., Joshi, N., Sivaprakasam, M., Gandhi, R.: Local characterization of neovascularization and identification of proliferative diabetic retinopathy in retinal fundus images. Comput. Med. Imaging Graph. 55, 124–132 (2017)

    Article  Google Scholar 

  12. Patil, P., Shettar, P., Narayankar, P., Patil, M.: An efficient method of detecting exudates in diabetic retinopathy: using texture edge features. In: 2016 International Conference on Advances in Computing, Communications, and Informatics (ICACCI), pp. 1188–1191 (2016)

    Google Scholar 

  13. Prasad, D.K., Vibha, L, Venugopal, K.R.: Early detection of diabetic retinopathy from digital retinal fundus images. In 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), 240–245 (2015)

    Google Scholar 

  14. Wong Ty, C.C., Larsen, M.: Sharma, S., Simo, R.: Diabetic retinopathy. Nat. Rev. Dis. Primers 2, 16012 (2016)

    Google Scholar 

  15. Xu, K., Feng, D., Mi, H.: Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 22(12), 2054 (2017)

    Article  Google Scholar 

  16. Winder, R.J., Morrow, P.J., McRitchie, I.N., Bailie, J.R., Hart, P.M.: Algorithms for digital image processing in diabetic retinopathy. Comput. Med. Imaging Graph. 33(8), 608–622 (2009)

    Article  Google Scholar 

  17. Wat, N., Wong, R.L., Wong, I.Y.: Associations between diabetic retinopathy and systemic risk factors. Hong Kong Med J. 22(6), 589–599 (2016)

    Google Scholar 

  18. Chui, T.Y., et al.: Longitudinal imaging of microvascular remodeling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy. Ophthalmic Physiol. Opt. 36(3), 290–302 (2016)

    Article  Google Scholar 

  19. Cheloni, R., Gandolfi, S.A., Signorelli, C., Odone, A.: Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ Open 9(3), e022188 (2019)

    Google Scholar 

  20. Norouzi, A., et al.: Medical image segmentation methods, algorithms, and applications. IETE Tech. Rev. 31(3), 199–213 (2014)

    Article  Google Scholar 

  21. Sami, A.S., Rahim, M.S.M., Ahmed, F.Y.H., Sulong, G.B.: A review study of methods utilized for identifying and segmenting the brain tumor from MR imageries (2019)

    Google Scholar 

  22. Norouzi, A., et al.: Medical image segmentation methods, algorithms, and applications. IETE Tech. Rev. 31(3), 199–213 (2014)

    Google Scholar 

  23. Salehinejad, H., Colak, E., Dowdell, T., Barfett, J., Valaee, S.: Synthesizing chest x-ray pathology for training deep convolutional neural networks. IEEE Trans. Med. Imaging 38(5), 1197–1206 (2018)

    Article  Google Scholar 

  24. Rad, A.E., Amin, I.B.M., Rahim, M.S.M., Kolivand, H.: Computer-aided dental caries detection system from X-ray images. In: Phon-Amnuaisuk, S., Au, T.W. (eds.) Computational Intelligence in Information Systems. AISC, vol. 331, pp. 233–243. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13153-5_23

    Chapter  Google Scholar 

  25. Awan, M.J., Rahim, M.S.M., Salim, N., Mohammed, M.A., Garcia-Zapirain, B., Abdulkareem, K.H.: Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach. Diagnostics (Basel) 11(1), 105 (2021)

    Article  Google Scholar 

  26. Vaziri, K., Moshfeghi, D.M., Moshfeghi, A.A.: Feasibility of telemedicine in detecting diabetic retinopathy and age-related macular degeneration. In Seminars in ophthalmology. Inf. Healthcare 30(2), 81–95 (2015)

    Google Scholar 

  27. Rahim, S.S., Palade, V., Shuttleworth, J., Jayne, C.: Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Inform. 3(4), 249–267 (2016). https://doi.org/10.1007/s40708-016-0045-3

    Article  Google Scholar 

  28. Al-Jarrah, M.A., Shatnawi, H.: Non-proliferative diabetic retinopathy symptoms detection and classification using neural network. J. Med. Eng. Technol. 41(6), 498–505 (2017)

    Article  Google Scholar 

  29. Liu, Y.P, Li, Z., Xu, C., Li, J., Liang, R.: Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Artif. Intell. Med. 99, 101694 (2019)

    Google Scholar 

  30. Harangi, B., Toth, J., Baran, A., Hajdu, A.: Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2699–2702 (2019)

    Google Scholar 

  31. Ghan, G., Chavan, S., Chaudhari, A.: Diabetic retinopathy classification using deep learning. In: Fourth International Conference on Inventive Systems and Control (ICISC), 2020, pp. 761–765 (2020)

    Google Scholar 

  32. Iyyanar, P., Parthasarathy, J.: Diabetic retinopathy classification using deep learning framework. J. Crit. Rev. 7(14), 2683–2689 (2020)

    Google Scholar 

  33. Adapa, D., Joseph Raj, A.N., Alisetti, S.N., Zhuang, Z., Naik, G.: A supervised blood vessel segmentation technique for digital Fundus images using Zernike Moment based features. PLoS ONE 15(3), e0229831 (2020)

    Google Scholar 

  34. Cao, P., Ren, F., Wan, C., Yang, J., Zaiane, O.: Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis. Comput. Med. Imaging Graph. 1(69), 112–124 (2018)

    Article  Google Scholar 

  35. Scanlon, P.H.: The English national screening program for diabetic retinopathy 2003–2016. Acta Diabetol. 54(6), 515–525 (2017)

    Article  Google Scholar 

  36. Nwankpa, C., et al., Activation Functions: Comparison of trends in Practice and Research for Deep Learning. In: 2nd International Conference on Computational Sciences and Technology (INCCST) (2020)

    Google Scholar 

  37. Sahlsten, J., et al.: Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Sci. Rep. 9(1), 1–1 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif Hameed Abbood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbood, S.H., Abdull Hamed, H.N., Mohd Rahim, M.S. (2022). Automatic Classification of Diabetic Retinopathy Through Segmentation Using CNN. In: Spinsante, S., Silva, B., Goleva, R. (eds) IoT Technologies for Health Care. HealthyIoT 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 432. Springer, Cham. https://doi.org/10.1007/978-3-030-99197-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99197-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99196-8

  • Online ISBN: 978-3-030-99197-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics