Skip to main content

Robust Transmission Design for IRS-Aided MISO Network with Reflection Coefficient Mismatch

  • Conference paper
  • First Online:
Communications and Networking (ChinaCom 2021)

Abstract

Intelligent reflection surface (IRS) has been recognized as a revolutionary technology to achieve spectrum and energy efficient wireless communications due to its capability to reconfigure the propagation channels. However, due to the limited cost and space of each reflection element, it is difficult to accurately adjust the reflection coefficients of the passive elements. In this paper, we propose a worst-case robust reflection coefficient design for an IRS-aided single-user multiple-input single-output (SU-MISO) system where one IRS is deployed to enhance the received signal quality. Based on the fact of imperfect adjustment of reflection coefficients, our goal is to minimize the transmission power subject to the signal-noise ratio (SNR) constraint on the receiver end and the unit-modulus constraints on the reflection coefficients. The resulting optimization problem is non-convex and in general hard to solve. To tackle this problem, we adopt the linear approximation and alternating optimization (AO) methods to convert the original optimization problem into a sequence of convex subproblems that could be efficiently solved. We then extend our work to a practical situation where only limited phase shifts at each element are available. Numerical results demonstrate the robustness of the transmission scheme and show that high resolution for phase shifts is not an essential condition to approach the ideal performance.

This work was supported in part by the National Natural Science Foundation of China under Grants 61901245, 62071275, 91938202, and 61871070, and the Natural Science Foundation of Shandong Province of China under Grant ZR2020MF139, and the Fundamental Research Funds of Shandong University under Grant 61170079614095.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, Q., Zhang, S., Zheng, B., You, C., Zhang, R.: Intelligent reflecting surface-aided wireless communications: a tutorial. IEEE Trans. Commun. 69(5), 3313–3351 (2021)

    Article  Google Scholar 

  2. Di Renzo, M., Debbah, M., Phan-Huy, D.-T., et al.: Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. EURASIP J. Wirel. Commn. 2019(1), 1–20 (2019)

    Article  Google Scholar 

  3. Liaskos, C., Nie, S., Tsioliaridou, A., Pitsillides, A., Ioannidis, S., Akyildiz, I.: A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56(9), 162–169 (2018)

    Article  Google Scholar 

  4. Wu, Q., Zhang, R.: Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58(1), 106–112 (2020)

    Article  Google Scholar 

  5. Hu, S., Rusek, F., Edfors, O.: Beyond massive MIMO: the potential of data transmission with large intelligent surfaces. IEEE Trans. Signal Process. 66(10), 2746–2758 (2018)

    Article  MathSciNet  Google Scholar 

  6. Zhang, J., Qi, C., Li, P., Lu, P.: Channel estimation for reconfigurable intelligent surface aided massive MIMO system. In: Proceedings of the IEEE SPAWC, May 2020 (2020)

    Google Scholar 

  7. Shtaiwi, E., Zhang, H., Vishwanath, S., Youssef, M., Abdelhadi, A., Han, Z.: Channel estimation approach for RIS assisted MIMO systems. IEEE Trans. Cogn. Commun. Netw. 7(2), 452–465 (2021)

    Article  Google Scholar 

  8. Wang, Z., Liu, L., Cui, S.: Channel estimation for intelligent reflecting surface assisted multiuser communications: framework, algorithms, and analysis. IEEE Trans. Wireless Commun. 19(10), 6607–6620 (2020)

    Article  Google Scholar 

  9. Wang, P., Fang, J., Duan, H., Li, H.: Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems. IEEE Signal Process. Lett. 27, 905–909 (2020)

    Article  Google Scholar 

  10. Zhou, G., Pan, C., Ren, H., Wang, K., Nallanathan, A.: A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels. IEEE Trans. Signal Process. 68, 5092–5106 (2020)

    Article  MathSciNet  Google Scholar 

  11. Wu, Q., Zhang, R.: Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wireless Commun. 18(11), 5394–5409 (2019)

    Article  Google Scholar 

  12. Yang, H., Xiong, Z., Zhao, J., Niyato, D., Xiao, L., Wu, Q.: Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications. IEEE Trans. Wireless Commun. 20(1), 375–388 (2021)

    Article  Google Scholar 

  13. Huang, C., Zappone, A., Alexandropoulos, G.C., Debbah, M., Yuen, C.: Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wireless Commun. 18(8), 4157–4170 (2019)

    Article  Google Scholar 

  14. Wu, Q., Zhang, R.: Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Trans. Commun. 68(3), 1838–1851 (2020)

    Article  Google Scholar 

  15. Abeywickrama, S., Zhang, R., Wu, Q., Yuen, C.: Intelligent reflecting surface: practical phase shift model and beamforming optimization. IEEE Trans. Commun. 68(9), 5849–5863 (2020)

    Article  Google Scholar 

  16. Zheng, G., Wong, K.-K., Ottersten, B.: Robust cognitive beamforming with bounded channel uncertainties. IEEE Trans. Signal Process. 57(12), 4871–4881 (2009)

    Article  MathSciNet  Google Scholar 

  17. Boyd, S., Vandenberghe, L., Faybusovich, L.: Convex optimization. IEEE Trans. Automat. Contr. 51(11), 1859 (2006)

    Article  Google Scholar 

  18. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.0 beta, September 2013 (2013). http://cvxr.com/cvx

  19. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in Learning and Control. LNCIS, vol. 371, pp. 95–110. Springer, London (2008). https://doi.org/10.1007/978-1-84800-155-8_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, R., Wei, N., Dong, Z., Xu, H., Liu, J. (2022). Robust Transmission Design for IRS-Aided MISO Network with Reflection Coefficient Mismatch. In: Gao, H., Wun, J., Yin, J., Shen, F., Shen, Y., Yu, J. (eds) Communications and Networking. ChinaCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-030-99200-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99200-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99199-9

  • Online ISBN: 978-3-030-99200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics