Abstract
One of the well-known superiorities of GIFT-64 over PRESENT lies in the correction of the strong linear hull effect. However, apart from the investigation of the 9-round linear hull effect in the design document, we find no linear attack result on GIFT-64. Although we do not doubt the security of GIFT-64 regarding the linear cryptanalysis, the actual resistance of the cipher to the linear attack should be evaluated since it promotes a comprehensive perception of the soundness of GIFT-64. Motivated by this observation, we implement an automatic search and find a 12-round linear distinguisher whose dominating trail is an optimal linear characteristic. Following that, the first 19-round linear attack is launched by utilising the newly identified distinguisher. On the other side, we notice that the previous differential attack of GIFT-64 covering 20 rounds claims the entire codebook. To reduce the data complexity of the 20-round attack, we apply the automatic method to exhaustively check 13-round differential trails with probabilities no less than \(2^{-64}\) and identify multiple 13-round differentials facilitating 20-round attacks without using the full codebook. One of the candidate differentials with the maximum probability and the minimum number of guessed subkey bits is then employed to realise the first 20-round differential attack without relying on the complete codebook. Given the newly obtained results, we conjecture that the resistances of GIFT-64 against differential and linear attacks do not have a significant gap. Also, we note that the attack results in this paper are far from threatening the security of GIFT-64.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
\(\mathbb {R}\) stands for the rational number field.
References
Ankele, R., Kölbl, S.: Mind the gap - a closer look at the security of block ciphers against differential cryptanalysis. In: Selected Areas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB, Canada, 15–17 August 2018, Revised Selected Papers, pp. 163–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7_8
Banik, S., et al.: SUNDAE-GIFT. Submission to Round 1 (2019)
Banik, S., et al.: GIFT-COFB. IACR Cryptol. ePrint Arch. 2020, 738 (2020). https://eprint.iacr.org/2020/738
Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint Arch. 2013, 404 (2013)
Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1
Blondeau, C., Gérard, B., Tillich, J.: Accurate estimates of the data complexity and success probability for various cryptanalyses. Des. Codes Cryptogr. 59(1–3), 3–34 (2011). https://doi.org/10.1007/s10623-010-9452-2
Blondeau, C., Nyberg, K.: Joint data and key distribution of simple, multiple, and multidimensional linear cryptanalysis test statistic and its impact to data complexity. Des. Codes Cryptogr. 82(1), 319–349 (2016). https://doi.org/10.1007/s10623-016-0268-6
Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31
Chakraborti, A., Datta, N., Jha, A., Lopez, C.M., Nandi, M., Sasaki, Y.: LOTUS-AEAD and LOCUS-AEAD. Submission to the NIST Lightweight Cryptography project (2019)
Chakraborti, A., Datta, N., Jha, A., Nandi, M.: HYENA. Submission to the NIST Lightweight Cryptography project (2019)
Chen, H., Zong, R., Dong, X.: Improved differential attacks on GIFT-64. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds.) ICICS 2019. LNCS, vol. 11999, pp. 447–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41579-2_26
Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_21
Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, Shaker Heights, Ohio, USA, 3–5 May 1971, pp. 151–158 (1971). https://doi.org/10.1145/800157.805047
Ji, F., Zhang, W., Zhou, C., Ding, T.: Improved (related-key) differential cryptanalysis on GIFT. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 198–228. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_8
Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_8
Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_2
Liu, Y., Sasaki, Yu.: Related-key boomerang attacks on GIFT with automated trail search including BCT effect. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 555–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_30
Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with applications to SPECK and Chaskey. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 485–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_26
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33
Rickmann, S.: Logic Friday (version 1.1. 3) [bibcomputer software] (2011)
Sasaki, Yu.: Integer linear programming for three-subset meet-in-the-middle attacks: application to GIFT. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 227–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97916-8_15
Selçuk, A.A.: on probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2007). https://doi.org/10.1007/s00145-007-9013-7
Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73
Soleimany, H., Nyberg, K.: Zero-correlation linear cryptanalysis of reduced-round LBlock. Des. Codes Cryptogr. 73(2), 683–698 (2014). https://doi.org/10.1007/s10623-014-9976-y
Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 379–394. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_24
Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24
Sun, L., Wang, W., Wang, M.: More accurate differential properties of LED64 and Midori64. IACR Trans. Symmetric Cryptol. 2018(3), 93–123 (2018). https://doi.org/10.13154/tosc.v2018.i3.93-123
Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1), 269–315 (2021). https://doi.org/10.46586/tosc.v2021.i1.269-315
Sun, L., Wang, W., Wang, M.: Improved attacks on GIFT-64. IACR Cryptol. ePrint Arch., 1179 (2021). https://eprint.iacr.org/2021/1179
Zhu, B., Dong, X., Yu, H.: MILP-based differential attack on round-reduced GIFT. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 372–390. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_19
Acknowledgements
The authors would like to thank the shepherd Kalikinkar Mandal and the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. The authors also would like to thank Yong Fu for the kind discussion. The research leading to these results has received funding from the National Natural Science Foundation of China (Grant No. 62002201, Grant No. 62032014), the National Key Research and Development Program of China (Grant No. 2018YFA0704702), the Major Scientific and Technological Innovation Project of Shandong Province, China (Grant No. 2019JZZY010133), the Major Basic Research Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR202010220025), and the Qingdao Postdoctor Application Research Project (Grant No. 61580070311101).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, L., Wang, W., Wang, M. (2022). Improved Attacks on GIFT-64. In: AlTawy, R., HĂĽlsing, A. (eds) Selected Areas in Cryptography. SAC 2021. Lecture Notes in Computer Science, vol 13203. Springer, Cham. https://doi.org/10.1007/978-3-030-99277-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-99277-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99276-7
Online ISBN: 978-3-030-99277-4
eBook Packages: Computer ScienceComputer Science (R0)