Skip to main content

Simple and Memory-Efficient Signature Generation of \(\mathrm {XMSS^{MT}}\)

  • Conference paper
  • First Online:
Selected Areas in Cryptography (SAC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13203))

Included in the following conference series:

  • 569 Accesses

Abstract

Stateful hash-based signature schemes are one of the most promising post-quantum signature schemes. Among them, XMSS and \(\mathrm {XMSS^{MT}}\) have already been specified in RFC 8391 and NIST SP 800-208. The signing time is exponential if the schemes are naively implemented. To reduce the signing time, Merkle tree traversal algorithms are used and the most time/memory efficient one is the BDS algorithm. We focus on \(\mathrm {XMSS^{MT}}\) (layered XMSS) with the BDS algorithm. Since \(\mathrm {XMSS^{MT}}\) is vulnerable to incorrect state management, the algorithm and state structure must be simple. Also, the state size for the BDS algorithm must be reduced in order to implement the scheme in resource-constrained devices. To achieve these objectives, we propose a simple and memory-efficient signature-generation algorithm for \(\mathrm {XMSS^{MT}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aumasson, J., et al.: SPHINCS+-submission to the 3rd round of the NIST post-quantum project (2020)

    Google Scholar 

  2. Groot Bruinderink, L., Hülsing, A.: “Oops, I did it again’’ – security of one-time signatures under two-message attacks. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 299–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_15

    Chapter  Google Scholar 

  3. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_8

    Chapter  Google Scholar 

  4. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_5

    Chapter  Google Scholar 

  5. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller, C.A.: Recommendation for stateful hash-based signature schemes. NIST Spec. Publ. 800, 208 (2020)

    Google Scholar 

  6. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_10

    Chapter  Google Scholar 

  7. Hülsing, A., Busold, C., Buchmann, J.: Forward secure signatures on smart cards. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 66–80. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_5

    Chapter  Google Scholar 

  8. Hülsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS: extended Merkle signature scheme. In: RFC 8391. IRTF (2018)

    Google Scholar 

  9. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSS\(^{MT}\). In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40588-4_14

    Chapter  Google Scholar 

  10. Hülsing, A., Rijneveld, J.: XMSS reference code (2020). https://github.com/XMSS/xmss-reference

  11. Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal Merkle tree representation and traversal. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 314–326. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_21

    Chapter  Google Scholar 

  12. Knecht, M., Meier, W., Nicola, C.U.: A space- and time-efficient implementation of the Merkle tree traversal algorithm (2014)

    Google Scholar 

  13. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_32

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhisa Kosuge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kosuge, H., Tanaka, H. (2022). Simple and Memory-Efficient Signature Generation of \(\mathrm {XMSS^{MT}}\). In: AlTawy, R., Hülsing, A. (eds) Selected Areas in Cryptography. SAC 2021. Lecture Notes in Computer Science, vol 13203. Springer, Cham. https://doi.org/10.1007/978-3-030-99277-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99277-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99276-7

  • Online ISBN: 978-3-030-99277-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics