Abstract
Cryptographic keys are increasingly stored in dedicated hardware or behind software interfaces. Doing so limits access, such as permitting only signing via ECDSA. This makes using them in existing ring and group signature schemes impossible as these schemes assume the ability to access the private key for other operations. We present a \(\varSigma \)-protocol that uses a committed public key to verify an ECDSA or Schnorr signature on a message, without revealing the public key. We then discuss how this protocol may be used to derive ring signatures in combination with Groth–Kohlweiss membership proofs and other applications. This scheme has been implemented and source code is freely available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 643–673. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_22
von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_18
Balfanz, D., et al.: FIDO UAF protocol specification v1.0. FIDO alliance standard, FIDO (December 2014). https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_38
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) CCS 1993, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, 3–5 November 1993, pp. 62–73. ACM (1993). https://doi.org/10.1145/168588.168596
Benarroch, D., Campanelli, M., Fiore, D., Kolonelos, D.: Zero-knowledge proofs for set membership: Efficient, succinct, modular. Cryptology ePrint Archive, Report 2019/1255 (October 2019). https://eprint.iacr.org/2019/1255
Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. J. Cryptol. 22(1), 114–138 (2007). https://doi.org/10.1007/s00145-007-9011-9
Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of the fiat-shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_38
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.org/10.1007/s13389-012-0027-1
Bröker, R.: Constructing Elliptic Curves of Prescribed Order. Ph.D. thesis, Leiden (2006)
Camenisch, J.: Group signature schemes and payment systems based on the discrete logarithm problem. Ph.D. thesis, ETH Zurich (1998)
Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7
Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_8
Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_5
Damgård, I.: On \(\varSigma \)-protocols (2010). https://www.cs.au.dk/~ivan/Sigma.pdf
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2
Faz-Hernández, A., Scott, S., Sullivan, N., Wahby, R.S., Wood, C.A.: Hashing to elliptic curves. internet-draft, internet engineering task force (April 2021). https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/, (work in progress)
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9
Hodges, J., Jones, J., Jones, M.B., Kumar, A., Lundberg, E.: Web Authentication: An API for accessing Public Key Credentials - Level 2. W3C recommendation, W3C (April 2021). https://www.w3.org/TR/webauthn-2
Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification (August 2021). https://zips.z.cash/protocol/protocol.pdf
Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001). https://doi.org/10.1007/s102070100002
MDN contributors: Bigint (2021). https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
National Institute of Standards and Technology: FIPS 186–2: Digital Signature Standard (DSS). Federal Information Processing Standards Publication (January 2000). https://csrc.nist.gov/CSRC/media/Publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 403–428. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_16
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Silverman, J.H.: The Geometry of Elliptic Curves. In: The Arithmetic of Elliptic Curves. GTM, vol. 106, pp. 41–114. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09494-6_3
Solinas, J.A.: Generalized Mersenne Numbers. Technical report, Centre for Applied Cryptographic Research, University of Waterloo (June 1999). https://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf
Standards for Efficient Cryptography Group: SEC 2: Recommended Elliptic Curve Domain Parameters. Standards for Efficient Cryptography (SEC) (September 2000). https://www.secg.org/sec2-v1.pdf
The PARI Group, Univ. Bordeaux: PARI/GP version 2.13.0 (2019). http://pari.math.u-bordeaux.fr/
Acknowledgements
We would like to thank SAC reviewers for providing feedback that helped us to improve the article. We also want to thank Alex Davidson for thoughtful discussions during the early stages of this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Faz-Hernández, A., Ladd, W., Maram, D. (2022). ZKAttest: Ring and Group Signatures for Existing ECDSA Keys. In: AlTawy, R., Hülsing, A. (eds) Selected Areas in Cryptography. SAC 2021. Lecture Notes in Computer Science, vol 13203. Springer, Cham. https://doi.org/10.1007/978-3-030-99277-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-99277-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99276-7
Online ISBN: 978-3-030-99277-4
eBook Packages: Computer ScienceComputer Science (R0)