Abstract
When a large amount of data is generated from multiple, heterogeneous and continuous data streams, the need for continuous processing and on-the-fly consumption of the overwhelming flow of data is crucial. In this context, the W3C RDF Stream Processing (RSP) Community Group has defined a common model for continuous querying RDF Streams, giving rise to a plethora of RSP engines. However, their main limitation is that, depending on the application queries, one RSP engine may be more appropriate than another, or multiple engines are required to address complex queries. In this paper, we propose a multi-agent based framework for distributed continuous processing that gives the opportunity to use several RSP engines in the same framework in order to benefit from their advantages and to offer the possibility to use them at the same time or in a sequence to answer complex queries. A preliminary experimental evaluation with a real-world benchmark shows promising results when compared to an existing work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
C-SPARQL: A Continuous Query Language For RDF Data Streams.
- 2.
CQELS: Continuous Query Evaluation over Linked Streams.
- 3.
- 4.
Due to space constraint, the full query is available on Github link.
- 5.
References
Dell’Aglio, D., Le Phuoc, D., Le-Tuan, A., Intizar Ali, M., Calbimonte, J.-P.: On a web of data streams (2017)
Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event processing and stream reasoning. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, 28 March–1 April 2011, pp. 635–6441 (2011)
Dell’Aglio, D., Calbimonte, J.-P., Balduini, M., Corcho, O., Della Valle, E.: On correctness in RDF stream processor benchmarking. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 326–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_21
de Almeida, V.P., Bhowmik, S., Lima, G.F., Endler, M., Rothermel, K.: DSCEP: an infrastructure for decentralized semantic complex event processing. In: IEEE International Conference on Big Data, Big Data 2020, Atlanta, GA, USA, 10–13 December 2020, pp. 391–398 (2020)
Puiu, D., et al.: CityPulse: large scale data analytics framework for smart cities. IEEE Access 4, 1086–1108 (2016)
Ali, M.I., Gao, F., Mileo, A.: CityBench: a configurable benchmark to evaluate RSP engines using smart city datasets. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 374–389. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_25
Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to streaming data sources. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_7
Gillani, S., Zimmermann, A., Picard, G., Laforest, F.: A query language for semantic complex event processing: syntax, semantics and implementation. Semant. Web 10(1), 53–93 (2019)
Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: a streaming RDF/SPARQL benchmark. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_40
Rinne, M., Nuutila, E., Torma, S., Glimm, B., Huynh, D.: INSTANS: high-performance event processing with standard RDF and SPARQL. In: Proceedings of the ISWC 2012 Posters and Demonstrations Track, Boston, USA, 11–15 November 2012, vol. 914 (2012)
Calvaresi, D., Calbimonte, J.-P.: Real-time compliant stream processing agents for physical rehabilitation. Sensors 20(3), 746 (2020)
Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a continuous query language for RDF data streams. Int. J. Semant. Comput. 4(1), 3–25 (2010)
Le-Phuoc, D., Nguyen Mau Quoc, H., Le Van, C., Hauswirth, M.: Elastic and Scalable Processing of Linked Stream Data in the Cloud. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 280–297. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_18
Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked stream data processing engines: facts and figures. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7650, pp. 300–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35173-0_20
Greenwood, D.A.P., Lyell, M., Mallya, A.U., Suguri, H.: The IEEE FIPA approach to integrating software agents and web services. In: 6th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007), Honolulu, Hawaii, USA, 14–18 May 2007, p. 276 (2007)
Ren, X., et al.: Strider: an adaptive, inference-enabled distributed RDF stream processing engine. Proc. VLDB Endow. 10(12), 1905–1908 (2017)
Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_24
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mebrek, W., Bouzeghoub, A. (2022). A Multi-agent Based Framework for RDF Stream Processing. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-030-99584-3_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-99584-3_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99583-6
Online ISBN: 978-3-030-99584-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)