Skip to main content

Performance Evaluation of WMNs by WMN-PSOHC Hybrid Simulation System Considering Different Instances: A Comparison Study for RDVM and LDIWM Replacement Methods

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 450))

  • 858 Accesses

Abstract

Wireless Mesh Networks (WMNs) have many good features and they are becoming an important networking infrastructure. However, WMNs have some problems such as node placement, security, transmission power and so on. To solve these problems, we have implemented a hybrid simulation system based on PSO and HC called WMN-PSOHC. In this paper, we evaluate the performance of WMNs by using WMN-PSOHC considering two instances: Instance 1 and Instance 2. Simulation results show that WMN-PSOHC performs better for Instance 1 compared with Instance 2. Also, RDVM performs better than LDIWM in this considered scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barolli, A., Sakamoto, S., Ohara, S., Barolli, L., Takizawa, M.: Performance analysis of WMNs by WMN-PSOHC-DGA simulation system considering linearly decreasing inertia weight and linearly decreasing Vmax replacement methods. In: Barolli, L., Nishino, H., Miwa, H. (eds.) INCoS 2019. AISC, vol. 1035, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29035-1_2

  2. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  3. Ozera, K., Bylykbashi, K., Liu, Y., Barolli, L.: A fuzzy-based approach for cluster management in VANETs: performance evaluation for two fuzzy-based systems. Internet Things 3, 120–133 (2018)

    Article  Google Scholar 

  4. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  5. Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Analysis of WMN-HC simulation system data using friedman test. In: The Ninth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2015), pp 254–259. IEEE (2015)

    Google Scholar 

  6. Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)

    Google Scholar 

  7. Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation of a new replacement method in WMN-PSO simulation system and its performance evaluation. In: The 30th IEEE International Conference on Advanced Information Networking and Applications (AINA-2016), pp. 206–211 (2016). https://doi.org/10.1109/AINA.2016.42

  8. Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mob. Netw. Appl. 23(1), 27–33 (2017). https://doi.org/10.1007/s11036-017-0897-7

    Article  Google Scholar 

  9. Sakamoto, S., Barolli, A., Barolli, L., Okamoto, S.: Implementation of a web interface for hybrid intelligent systems. Int. J. Web Inf. Syst. 15(4), 420–431 (2019)

    Article  Google Scholar 

  10. Sakamoto, S., Barolli, L., Okamoto, S.: WMN-PSOSA: an intelligent hybrid simulation system for WMNs and its performance evaluations. Int. J. Web Grid Serv. 15(4), 353–366 (2019)

    Article  Google Scholar 

  11. Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005)

    Article  MathSciNet  Google Scholar 

  12. Shi, Y.: Particle swarm optimization. IEEE Connect. 2(1), 8–13 (2004)

    Google Scholar 

  13. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0040810

  14. Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS-2007), pp. 1–9 (2007)

    Google Scholar 

  15. Xhafa, F., Sanchez, C., Barolli, L.: Ad hoc and neighborhood search methods for placement of mesh routers in wireless mesh networks. In: Proceedings of the of 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS-2009), pp. 400–405 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakamoto, S., Liu, Y., Barolli, L. (2022). Performance Evaluation of WMNs by WMN-PSOHC Hybrid Simulation System Considering Different Instances: A Comparison Study for RDVM and LDIWM Replacement Methods. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-030-99587-4_2

Download citation

Publish with us

Policies and ethics