Skip to main content

Formal Specification of a Team Formation Protocol

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 451))

Abstract

A high level specification provides the behavioral aspects of a protocol, i.e., the functional or logical properties. Such a specification should say what a protocol is allowed to do and not how it is achieved or implemented. State transition systems are mostly used to specify behavior of the agents (or robots) and temporal logic formulas are used to specify desirable properties of a system. TLA\(^+\) is a formal specification language designed to provide high level specifications of concurrent and distributed systems. We provide a formal specification of a team formation protocol using TLA\(^+\). TLC model checker is used to verify that the TLA\(^+\) specification satisfies some desirable properties of the protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamport, L.: A simple approach to specifying concurrent systems. Commun. ACM 32(1), 32–45 (1989)

    Article  MathSciNet  Google Scholar 

  2. Lamport, L.: Specifying concurrent program modules. ACM Trans. Program. Lang. Syst. 5(2), 190–222 (1983)

    Article  Google Scholar 

  3. Gerkey, B.P., Mataric, M.J.: Sold!: auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  4. Kong, Y., Zhang, M., Ye, D.: An auction-based approach for group task allocation in an open network environment. Comput. J. 59(3), 403–422 (2015)

    Article  MathSciNet  Google Scholar 

  5. Batson, B., Lamport, L.: High-level specifications: lessons from industry. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 242–261. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39656-7_10

    Chapter  Google Scholar 

  6. Gjondrekaj, E., et al.: Towards a formal verification methodology for collective robotic systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 54–70. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34281-3_7

  7. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for swarm robotics. In: International Conference on Autonomous Agents and Multiagent Systems, pp. 139–146 (2012)

    Google Scholar 

  8. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: a kernel language for agents interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)

    Article  Google Scholar 

  9. De Nicola, R., Katoen, J., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

    Article  MathSciNet  Google Scholar 

  10. Holzmann, G.: Spin Model Checker, The Primer and Reference manual. Addison Wesley Professional (2003)

    Google Scholar 

  11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press (2006)

    Google Scholar 

  12. Jones, C.B.: Systematic Software Development using VDM. Prentice Hall (1990)

    Google Scholar 

  13. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behavior via probabilistic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

    Article  Google Scholar 

  14. Konur, S., Dixon, C., Fisher, M.: Formal verification of probabilistic swarm behaviours. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 440–447. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_42

    Chapter  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model checker. In: International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, pp. 200–204 (2002)

    Google Scholar 

  16. Lamport, L.: The TLA home page. http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

  17. Lamport, L.: Specifying Systems. The TLA\(^+\) Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002)

    Google Scholar 

  18. Loreti, M.: SAM: Stochastic Analyser for Mobility. http://rap.dsi.unifi.it/SAM

  19. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification and verification of autonomous robotic systems: a survey. ACM Comput. Surv. 52(5), 1–41 (2020)

    Article  Google Scholar 

  20. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.: How Amazon web services uses formal methods. Commun. ACM 58(4), 66–73 (2015)

    Article  Google Scholar 

  21. Spivey, M.: The Z Notation. Prentice Hall International (1992)

    Google Scholar 

  22. Webster, M.: Toward reliable autonomous robotic assistants through formal verification: a case study. Trans. Hum. Mach. Syst. 46(2), 186–196 (2016)

    Article  Google Scholar 

  23. Webster, M., et al.: Formal verification of an autonomous personal robotic assistant. In: AAAI FVHMS, pp. 74–79 (2014)

    Google Scholar 

  24. Nath, A., Arun, A.R., Niyogi, R.: An approach for task execution in dynamic multirobot environment. In: Mitrovic, T., Xue, B., Li, X. (eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 71–76. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03991-2_7

    Chapter  Google Scholar 

  25. Nath, A., Arun, A.R, Niyogi, R.: A distributed approach for autonomous cooperative transportation in a dynamic multi-robot environment. In: The 35th ACM Symposium on Applied Computing, pp. 792–799 (2020)

    Google Scholar 

  26. Nath, A., Arun, A.R., Niyogi, R.: DMTF: a distributed algorithm for multi-team formation. In: 12th International Conference on Agents and Artificial Intelligence, vol. 1, pp. 152–160 (2020)

    Google Scholar 

Download references

Acknowledgements

The author was in part supported by a research grant from Google.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajdeep Niyogi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niyogi, R. (2022). Formal Specification of a Team Formation Protocol. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 451. Springer, Cham. https://doi.org/10.1007/978-3-030-99619-2_29

Download citation

Publish with us

Policies and ethics