Abstract
The last few years have seen a huge explosion in the use of Machine Learning (ML)-based approaches, particularly Deep Neural Networks (DNNs) in a variety of fields, to solve complex prediction problems, or in industry to provide a very effective predictive maintenance system for equipment, or in the field of image manipulation and computer vision. In addition, recent publications have contributed to the evolution of Intelligent User Interfaces (IUIs) through DNN-based approaches. This paper aims to share a recent overview of published work on the development of IUIs, initially through ML techniques and then, analyze only those based on DNN models. The ultimate goal is to provide researchers with concrete support to be able to develop IUI projects and to be able to inform them about the latest developments on Artificial Intelligence (AI) models used in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amato, F., Cozzolino, G., Moscato, F., Moscato, V., Picariello, A., Sperli, G.: Data mining in social network. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C., Vlacic, L. (eds.) Intelligent Interactive Multimedia Systems and Services, pp. 53ā63. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92231-7_6
La Gatta, V., Moscato, V., Postiglione, M., SperlƬ, G.: CASTLE: cluster-aided space transformation for local explanations. Exp. Syst. Appl. 179, 115045 (2021)
Petrillo, A., Picariello, A., Santini, S., Scarciello, B., SperlĆ, G.: Model-based vehicular prognostics framework using Big Data architecture. Comput. Ind. 115, 103177 (2020). ISSN 0166-3615. https://doi.org/10.1016/j.compind.2019.103177
Xu, H., Chai, L., Luo, Z., Li, S.: Stock movement prediction via gated recurrent unit network based on reinforcement learning with incorporated attention mechanisms. Neurocomputing 467, 214ā228 (2022). ISSN 0925-2312. https://doi.org/10.1016/j.neucom.2021.09.072
Giacalone, M., Salehi, S.: CREA: an introduction to conflict resolution with equitative algorithms. In: Romeo, F., DallāAglio, M., Giacalone, M., Torino, G. (eds.) Algorithmic Conflict Resolution (2019)
Jeyaraj, S., Raghuveera, T.: A deep learning based end-to-end system (F-Gen) for automated email FAQ generation. Exp. Syst. Appl. 187, 115896 (2022). ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2021.115896
Liu, H., Peng, H., Song, X., Xu, C., Zhang, M.: Using AI chatbots to provide self-help depression interventions for university students: a randomized trial of effectiveness. Internet Interv. 27, 100495 (2022). ISSN 2214-7829. https://doi.org/10.1016/j.invent.2022.100495
Jothi, K.R., Balaji, B.S., Pandey, N., Beriwal, P., Amarajan, A.: An efficient SQL injection detection system using deep learning. In: 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), pp. 442ā445 (2021). https://doi.org/10.1109/ICCIKE51210.2021.9410674
Akkineni, H., Lakshmi, P.V.S., Sarada, L.: Design and development of retrieval-based chatbot using sentence similarity. In: Nayak, P., Pal, S., Peng, S.-L. (eds.) IoT and Analytics for Sensor Networks: Proceedings of ICWSNUCA 2021, pp. 477ā487. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2919-8_43
Nayak, N.K., Pooja, G., Kumar, R.R., Spandana, M., Shobha, P.: Health assistant bot. In: Shetty, N.R., Patnaik, L.M., Nagaraj, H.C., Hamsavath, P.N., Nalini, N. (eds.) ERCICA 2020, pp. 219ā227. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-1338-8_19
Giacalone, M., Salehi, S.S.: Online dispute resolution: the perspective of service providers. In: Romeo, F., DallāAglio, M., Giacalone, M., Torino, G. (eds.) Algorithmic Conflict Resolution (2019)
Wolf, J., Wiedner, M., Kari, M., Bethge, D.: HMInference: inferring multimodal HMI interactions in automotive screens. In: 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 230ā236. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3409118.3475145
Mezhoudi, N., Vanderdonckt, J.: Toward a task-driven intelligent GUI adaptation by mixed-initiative. Int. J. Hum. Comput. Interact. 37(5), 445ā458 (2021). https://doi.org/10.1080/10447318.2020.1824742
Wawer, A., Chojnicka, I., Okruszek, L., et al.: Single and cross-disorder detection for autism and schizophrenia. Cogn. Comput. 14, 461ā473 (2022). https://doi.org/10.1007/s12559-021-09834-9
Rocha, C.V.M., et al.: A chatbot solution for self-reading energy consumption via chatting applications. J. Control Autom. Electr. Syst. 33(1), 229ā240 (2022). https://doi.org/10.1007/s40313-021-00818-6
Qureshi, K.N., Ahmad, A., Piccialli, F., Casolla, G., Jeon, G.: Nature-inspired algorithm-based secure data dissemination framework for smart city networks. Neural Comput. Appl. 33(17), 10637ā10656 (2020). https://doi.org/10.1007/s00521-020-04900-z
Canonico, R., et al.: A smart chatbot for specialist domains. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) WAINA-2020, pp. 1003ā1010. Springer, Cham (2020). ISSN 21945357. ISBN 9783030440374. https://doi.org/10.1007/978-3-030-44038-1_92
Khan, M., et al.: Enabling multimedia aware vertical handover management in Internet of Things based heterogeneous wireless networks. Multimedia Tools Appl. 76(24), 25919ā25941 (2017)
Lv, Z., Piccialli, F.: The security of medical data on internet based on differential privacy technology. ACM Trans. Internet Technol. 21(3), 1ā18 (2021)
Saadna, Y., Boudhir, A.A., Ben Ahmed, M.: An analysis of ResNet50 model and RMSprop optimizer for education platform using an intelligent chatbot system. In: Ben Ahmed, M., Teodorescu, H.-N.L., Mazri, T., Subashini, P., Boudhir, A.A. (eds.) Networking, Intelligent Systems and Security: Proceedings of NISS 2021, pp. 577ā590. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3637-0_41
Aggarwal, H., Kapur, S., Bahuguna, V., Nagrath, P., Jain, R.: Chatbot to map medical prognosis and symptoms using machine learning. In: Khanna, K., Estrela, V.V., Rodrigues, J.J.P.C. (eds.) Cyber Security and Digital Forensics: Proceedings of ICCSDF 2021, pp. 75ā85. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3961-6_8
Jain, A., Yadav, K., Alharbi, H.F., Tiwari, S.: IoT & AI enabled three-phase secure and non-invasive COVID 19 diagnosis system. Comput. Mater. Continua (CMC) 71(1), 423ā438 (2022). https://doi.org/10.32604/cmc.2022.020238
Amato, A., Cozzolino, G., Giacalone, M.: Opinion mining in consumers food choice and quality perception. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds.) 3PGCIC-2019, pp. 310ā317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33509-0_28
Zouhaier, L., Hlaoui, Y.B.D., Ayed, L.B.: A reinforcement learning based approach of context-driven adaptive user interfaces. In: 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 1463ā1468 (2021). https://doi.org/10.1109/COMPSAC51774.2021.00217
Giacalone, M., Loui, R.P.: Dispute resolution with arguments over milestones: changing the representation to facilitate changing the focus. Jusletter IT IRIS 2018, 167ā174 (2018)
Amato, F., Moscato, V., Picariello, A., Sperli, G.: KIRA: a system for knowledge-based access to multimedia art collections. In: Proceedings of the IEEE 11th International Conference on Semantic Computing, ICSC 2017, pp. 338ā343 (2017). Art. no. 7889559. ISBN 9781509048960. https://doi.org/10.1109/ICSC.2017.59
Amato, F., et al.: Challenge: processing web texts for classifying job offers. In: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing, IEEE ICSC 2015, pp. 460ā463. Institute of Electrical and Electronics Engineers Inc. (2015). Art. no. 7050852. ISBN 9781479979356. https://doi.org/10.1109/ICOSC.2015.7050852
Edwards, T., Jones, C.B., Corcoran, P.: Identifying wildlife observations on Twitter. Ecol. Inf. 67, 101500 (2022). ISSN 1574-9541. https://doi.org/10.1016/j.ecoinf.2021.101500
EligĆ¼zel, N., Ćetinkaya, C., Dereli, T.: Application of named entity recognition on tweets during earthquake disaster: a deep learning-based approach. Soft. Comput. 26(1), 395ā421 (2022). https://doi.org/10.1007/s00500-021-06370-4
Castiglione, A., Cozzolino, G., Moscato, V., Sperli, G.: Analysis of community in social networks based on game theory. In: Proceedings of the IEEE 17th International Conference on Dependable, Autonomic and Secure Computing, IEEE 4th Cyber Science and Technology Congress, DASC-PiCom-CBDCom-CyberSciTech 2019, pp. 619ā626. Institute of Electrical and Electronics Engineers Inc. (2019). Art. no. 8890406. https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00118
Guo, J.: Deep learning approach to text analysis for human emotion detection from big data. J. Intel. Syst. 31(1), 113ā126 (2022). https://doi.org/10.1515/jisys-2022-0001
Luo, W., Zhang, L.: Question text classification method of tourism based on deep learning model. Wirel. Commun. Mob. Comput. 2022 (2022). Article ID 4330701, 9 pages. https://doi.org/10.1155/2022/4330701
Acknowledgments
This paper has been produced with the financial support of the Justice Programme of the European Union, 101046629 CREA2, JUST-2021-EJUSTICE, JUST2027 Programme. The contents of this report are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Commission.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ferraro, A., Giacalone, M. (2022). A Review About Machine and Deep Learning Approaches for Intelligent User Interfaces. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 451. Springer, Cham. https://doi.org/10.1007/978-3-030-99619-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-99619-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99618-5
Online ISBN: 978-3-030-99619-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)