Abstract
Dense passage retrieval (DPR) models show great effectiveness gains in first stage retrieval for the web domain. However in the web domain we are in a setting with large amounts of training data and a query-to-passage or a query-to-document retrieval task. We investigate in this paper dense document-to-document retrieval with limited labelled target data for training, in particular legal case retrieval. In order to use DPR models for document-to-document retrieval, we propose a Paragraph Aggregation Retrieval Model (PARM) which liberates DPR models from their limited input length. PARM retrieves documents on the paragraph-level: for each query paragraph, relevant documents are retrieved based on their paragraphs. Then the relevant results per query paragraph are aggregated into one ranked list for the whole query document. For the aggregation we propose vector-based aggregation with reciprocal rank fusion (VRRF) weighting, which combines the advantages of rank-based aggregation and topical aggregation based on the dense embeddings. Experimental results show that VRRF outperforms rank-based aggregation strategies for dense document-to-document retrieval with PARM. We compare PARM to document-level retrieval and demonstrate higher retrieval effectiveness of PARM for lexical and dense first-stage retrieval on two different legal case retrieval collections. We investigate how to train the dense retrieval model for PARM on limited target data with labels on the paragraph or the document-level. In addition, we analyze the differences of the retrieved results of lexical and dense retrieval with PARM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abolghasemi, A., Verberne, S., Azzopardi, L.: Improving BERT-based query-by-document retrieval with multi-task optimization. In: Hagen, M. et al. (Eds.) ECIR 2022. LNCS, vol. 13185, pp. xx–yy. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-99736-6_2
Ai, Q., O’Connor, B., Croft, W.B.: A neural passage model for ad-hoc document retrieval. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 537–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_41
Akkalyoncu Yilmaz, Z., Wang, S., Yang, W., Zhang, H., Lin, J.: Applying BERT to document retrieval with birch. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, Hong Kong, China, November 2019, pp. 19–24. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-3004. https://aclanthology.org/D19-3004
Akkalyoncu Yilmaz, Z., Yang, W., Zhang, H., Lin, J.: Cross-domain modeling of sentence-level evidence for document retrieval. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, November 2019, pp. 3490–3496. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1352. https://aclanthology.org/D19-1352
Akkalyoncu Yilmaz, Z., Yang, W., Zhang, H., Lin, J.: Cross-domain modeling of sentence-level evidence for document retrieval. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, November 2019, pp. 3490–3496. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1352. https://www.aclweb.org/anthology/D19-1352
Bajaj, P., et al.: MS MARCO: a human generated MAchine Reading COmprehension dataset. In: Proceedings of the NIPS (2016)
Bendersky, M., Kurland, O.: Utilizing passage-based language models for document retrieval. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 162–174. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78646-7_17
Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., Androutsopoulos, I.: LEGAL-BERT: the Muppets straight out of law school. In: Findings of the Association for Computational Linguistics, EMNLP 2020, Online, November 2020, pp. 2898–2904. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.261. https://www.aclweb.org/anthology/2020.findings-emnlp.261
Cohan, A., Feldman, S., Beltagy, I., Downey, D., Weld, D.: SPECTER: document-level representation learning using citation-informed transformers. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, July 2020, pp. 2270–2282. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.207. https://aclanthology.org/2020.acl-main.207
Cormack, G.V., Clarke, C.L.A., Buettcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, pp. 758–759. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1571941.1572114
Dai, Z., Callan, J.: Deeper text understanding for IR with contextual neural language modeling. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, pp. 985–988. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3331184.3331303
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, June 2019, pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/N19-1423. https://www.aclweb.org/anthology/N19-1423
Gao, J., et al.: FIRE 2019@AILA: legal retrieval based on information retrieval model. In: Proceedings of the Forum for Information Retrieval Evaluation, FIRE 2019 (2019)
Gao, L., Dai, Z., Chen, T., Fan, Z., Durme, B.V., Callan, J.: Complementing lexical retrieval with semantic residual embedding. arXiv arXiv:2004.13969 (April 2020)
Hedin, B., Zaresefat, S., Baron, J., Oard, D.: Overview of the TREC 2009 legal track. In: Proceedings of the 18th Text REtrieval Conference, TREC 2009 (January 2009)
García Seco de Herrera, A., Schaer, R., Markonis, D., Müller, H.: Comparing fusion techniques for the ImageCLEF 2013 medical case retrieval task. Comput. Med. Imaging Graph. 39, 46–54 (2014). http://publications.hevs.ch/index.php/attachments/single/676
Hofstätter, S., Althammer, S., Schröder, M., Sertkan, M., Hanbury, A.: Improving efficient neural ranking models with cross-architecture knowledge distillation (2021)
Hofstätter, S., Lin, S.C., Yang, J.H., Lin, J., Hanbury, A.: Efficiently teaching an effective dense retriever with balanced topic aware sampling (2021)
Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781. Association for Computational Linguistics, Online, November 2020 (2020). https://doi.org/10.18653/v1/2020.emnlp-main.550. https://www.aclweb.org/anthology/2020.emnlp-main.550
Lee, J.H.: Analyses of multiple evidence combination. SIGIR Forum 31(SI), 267–276 (1997). https://doi.org/10.1145/278459.258587
Li, C., Yates, A., MacAvaney, S., He, B., Sun, Y.: Parade: passage representation aggregation for document reranking. arXiv preprint arXiv:2008.09093 (2020)
Liu, X., Croft, W.B.: Passage retrieval based on language models. In: Proceedings of the 11th International Conference on Information and Knowledge Management, CIKM 2002, pp. 375–382. Association for Computing Machinery, New York (2002). https://doi.org/10.1145/584792.584854
Locke, D., Zuccon, G.: A test collection for evaluating legal case law search. In: 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018, pp. 1261–1264. Association for Computing Machinery, Inc. (June 2018). https://doi.org/10.1145/3209978.3210161
Locke, D., Zuccon, G., Scells, H.: Automatic query generation from legal texts for case law retrieval. In: Sung, W.-K., et al. (eds.) Information Retrieval Technology, pp. 181–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70145-5_14
Luan, Y., Eisenstein, J., Toutanova, K., Collins, M.: Sparse, dense, and attentional representations for text retrieval. arXiv preprint arXiv:2005.00181 (2020)
Montague, M., Aslam, J.A.: Condorcet fusion for improved retrieval. In: Proceedings of the 11th International Conference on Information and Knowledge Management, CIKM 2002, pp. 538–548. Association for Computing Machinery, New York (2002). https://doi.org/10.1145/584792.584881
Mourão, A., Martins, F., Magalhães, J.: Multimodal medical information retrieval with unsupervised rank fusion. Comput. Med. Imaging Graph. 39, 35–45 (2015). Medical visual information analysis and retrieval. https://doi.org/10.1016/j.compmedimag.2014.05.006. https://www.sciencedirect.com/science/article/pii/S0895611114000664
Piroi, F., Tait, J.: CLEF-IP 2010: retrieval experiments in the intellectual property domain. In: Proceedings of CLEF 2010 (2010)
Rabelo, J., Kim, M.-Y., Goebel, R., Yoshioka, M., Kano, Y., Satoh, K.: A summary of the COLIEE 2019 competition. In: Sakamoto, M., Okazaki, N., Mineshima, K., Satoh, K. (eds.) JSAI-isAI 2019. LNCS (LNAI), vol. 12331, pp. 34–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58790-1_3
Risch, J., Alder, N., Hewel, C., Krestel, R.: PatentMatch: a dataset for matching patent claims & prior art (2020)
Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. 3(4), 333–389 (2009). https://doi.org/10.1561/1500000019
Shao, Y., Liu, B., Mao, J., Liu, Y., Zhang, M., Ma, S.: THUIR@COLIEE-2020: leveraging semantic understanding and exact matching for legal case retrieval and entailment. CoRR abs/2012.13102 (2020). https://arxiv.org/abs/2012.13102
Shao, Y., et al.: BERT-PLI: modeling paragraph-level interactions for legal case retrieval. In: Bessiere, C. (ed.) Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 3501–3507. International Joint Conferences on Artificial Intelligence Organization (July 2020). Main track. https://doi.org/10.24963/ijcai.2020/484
Shaw, J.A., Fox, E.A.: Combination of multiple searches. In: The 2nd Text Retrieval Conference, TREC-2, pp. 243–252 (1994)
Van Opijnen, M., Santos, C.: On the concept of relevance in legal information retrieval. Artif. Intell. Law 25(1), 65–87 (2017). https://doi.org/10.1007/s10506-017-9195-8
Wu, S.: Ranking-based fusion. In: Data Fusion in Information Retrieval. Adaptation, Learning, and Optimization, vol. 13, pp 135–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28866-1_7
Wu, Z., et al.: Leveraging passage-level cumulative gain for document ranking. In: Proceedings of the Web Conference 2020, WWW 2020, pp. 2421–2431. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3366423.3380305
Wu, Z., Mao, J., Liu, Y., Zhang, M., Ma, S.: Investigating passage-level relevance and its role in document-level relevance judgment. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, pp. 605–614. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3331184.3331233
Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=zeFrfgyZln
Yang, L., Zhang, M., Li, C., Bendersky, M., Najork, M.: Beyond 512 tokens: Siamese multi-depth transformer-based hierarchical encoder for long-form document matching. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM 2020, pp. 1725–1734. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3340531.3411908
Zhang, X., Yates, A., Lin, J.: Comparing score aggregation approaches for document retrieval with pretrained transformers. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12657, pp. 150–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_11
Zhang, X., Yates, A., Lin, J.J.: Comparing score aggregation approaches for document retrieval with pretrained transformers. In: ECIR (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Althammer, S., Hofstätter, S., Sertkan, M., Verberne, S., Hanbury, A. (2022). PARM: A Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13185. Springer, Cham. https://doi.org/10.1007/978-3-030-99736-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-99736-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99735-9
Online ISBN: 978-3-030-99736-6
eBook Packages: Computer ScienceComputer Science (R0)