Skip to main content

Leveraging Content-Style Item Representation for Visual Recommendation

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13186))

Included in the following conference series:

Abstract

When customers’ choices may depend on the visual appearance of products (e.g., fashion), visually-aware recommender systems (VRSs) have been shown to provide more accurate preference predictions than pure collaborative models. To refine recommendations, recent VRSs have tried to recognize the influence of each item’s visual characteristic on users’ preferences, for example, through attention mechanisms. Such visual characteristics may come in the form of content-level item metadata (e.g., image tags) and reviews, which are not always and easily accessible, or image regions-of-interest (e.g., the collar of a shirt), which miss items’ style. To address these limitations, we propose a pipeline for visual recommendation, built upon the adoption of those features that can be easily extracted from item images and represent the item content on a stylistic level (i.e., color, shape, and category of a fashion product). Then, we inject such features into a VRS that exploits attention mechanisms to uncover users’ personalized importance for each content-style item feature and a neural architecture to model non-linear patterns within user-item interactions. We show that our solution can reach a competitive accuracy and beyond-accuracy trade-off compared with other baselines on two fashion datasets. Code and datasets are available at: https://github.com/sisinflab/Content-Style-VRSs.

Authors are listed in alphabetical order.

F. A. Merra—Work performed while at Politecnico di Bari, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anelli, V.W., et al.: Elliot: a comprehensive and rigorous framework for reproducible recommender systems evaluation. In: SIGIR, pp. 2405–2414. ACM (2021)

    Google Scholar 

  2. Anelli, V.W., et al.: V-elliot: design, evaluate and tune visual recommender systems. In: RecSys, pp. 768–771. ACM (2021)

    Google Scholar 

  3. Anelli, V.W., Deldjoo, Y., Di Noia, T., Malitesta, D., Merra, F.A.: A study of defensive methods to protect visual recommendation against adversarial manipulation of images. In: SIGIR, pp. 1094–1103. ACM (2021)

    Google Scholar 

  4. Anelli, V.W., Di Noia, T., Di Sciascio, E., Ferrara, A., Mancino, A.C.M.: Sparse feature factorization for recommender systems with knowledge graphs. In: RecSys, pp. 154–165. ACM (2021)

    Google Scholar 

  5. Boratto, L., Fenu, G., Marras, M.: Connecting user and item perspectives in popularity debiasing for collaborative recommendation. Inf. Process. Manag. 58(1), 102387 (2021)

    Google Scholar 

  6. Chen, J., Ngo, C., Feng, F., Chua, T.: Deep understanding of cooking procedure for cross-modal recipe retrieval. In: ACM Multimedia, pp. 1020–1028. ACM (2018)

    Google Scholar 

  7. Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.: Attentive collaborative filtering: multimedia recommendation with item- and component-level attention. In: SIGIR, pp. 335–344. ACM (2017)

    Google Scholar 

  8. Chen, X., et al.: Personalized fashion recommendation with visual explanations based on multimodal attention network: towards visually explainable recommendation. In: SIGIR, pp. 765–774. ACM (2019)

    Google Scholar 

  9. Cheng, Z., Chang, X., Zhu, L., Kanjirathinkal, R.C., Kankanhalli, M.S.: MMALFM: explainable recommendation by leveraging reviews and images. ACM Trans. Inf. Syst. 37(2), 16:1–16:28 (2019)

    Google Scholar 

  10. Chong, X., Li, Q., Leung, H., Men, Q., Chao, X.: Hierarchical visual-aware minimax ranking based on co-purchase data for personalized recommendation. In: WWW, pp. 2563–2569. ACM/IW3C2 (2020)

    Google Scholar 

  11. Deldjoo, Y., Di Noia, T., Malitesta, D., Merra, F.A.: A study on the relative importance of convolutional neural networks in visually-aware recommender systems. In: CVPR Workshops, pp. 3961–3967. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  12. Deldjoo, Y., Schedl, M., Cremonesi, P., Pasi, G.: Recommender systems leveraging multimedia content. ACM Comput. Surv. (CSUR) 53(5), 1–38 (2020)

    Article  Google Scholar 

  13. Deldjoo, Y., Schedl, M., Hidasi, B., He, X., Wei, Y.: Multimedia recommender systems: algorithms and challenges. In: Recommender Systems Handbook. Springer, US (2022)

    Google Scholar 

  14. Elsweiler, D., Trattner, C., Harvey, M.: Exploiting food choice biases for healthier recipe recommendation. In: SIGIR, pp. 575–584. ACM (2017)

    Google Scholar 

  15. Gao, X., et al.: Hierarchical attention network for visually-aware food recommendation. IEEE Trans. Multim. 22(6), 1647–1659 (2020)

    Google Scholar 

  16. Gunawardana, A., Shani, G.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 265–308. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_8

    Chapter  Google Scholar 

  17. He, R., McAuley, J.J.: Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In: WWW, pp. 507–517. ACM (2016)

    Google Scholar 

  18. He, R., McAuley, J.J.: VBPR: visual Bayesian personalized ranking from implicit feedback. In: AAAI, pp. 144–150. AAAI Press (2016)

    Google Scholar 

  19. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: WWW, pp. 173–182. ACM (2017)

    Google Scholar 

  20. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. CoRR abs/1503.02531 (2015)

    Google Scholar 

  21. Hou, M., Wu, L., Chen, E., Li, Z., Zheng, V.W., Liu, Q.: Explainable fashion recommendation: a semantic attribute region guided approach. In: IJCAI, pp. 4681–4688. ijcai.org (2019)

    Google Scholar 

  22. Hu, Y., Yi, X., Davis, L.S.: Collaborative fashion recommendation: a functional tensor factorization approach. In: ACM Multimedia, pp. 129–138. ACM (2015)

    Google Scholar 

  23. Kang, W., Fang, C., Wang, Z., McAuley, J.J.: Visually-aware fashion recommendation and design with generative image models. In: ICDM, pp. 207–216. IEEE Computer Society (2017)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  25. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  26. Liu, Q., Wu, S., Wang, L.: Deepstyle: learning user preferences for visual recommendation. In: SIGIR, pp. 841–844. ACM (2017)

    Google Scholar 

  27. Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., Burke, R.: Feedback loop and bias amplification in recommender systems. In: CIKM, pp. 2145–2148. ACM (2020)

    Google Scholar 

  28. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR. ACM (2015)

    Google Scholar 

  29. Meng, L., Feng, F., He, X., Gao, X., Chua, T.: Heterogeneous fusion of semantic and collaborative information for visually-aware food recommendation. In: ACM Multimedia, pp. 3460–3468. ACM (2020)

    Google Scholar 

  30. Niu, W., Caverlee, J., Lu, H.: Neural personalized ranking for image recommendation. In: WSDM, pp. 423–431. ACM (2018)

    Google Scholar 

  31. Packer, C., McAuley, J.J., Ramisa, A.: Visually-aware personalized recommendation using interpretable image representations. CoRR abs/1806.09820 (2018)

    Google Scholar 

  32. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  33. Sertkan, M., Neidhardt, J., Werthner, H.: Pictoure - A picture-based tourism recommender. In: RecSys, pp. 597–599. ACM (2020)

    Google Scholar 

  34. Tangseng, P., Okatani, T.: Toward explainable fashion recommendation. In: WACV, pp. 2142–2151. IEEE (2020)

    Google Scholar 

  35. Vargas, S.: Novelty and diversity enhancement and evaluation in recommender systems and information retrieval. In: SIGIR, p. 1281. ACM (2014)

    Google Scholar 

  36. Wu, Q., Zhao, P., Cui, Z.: Visual and textual jointly enhanced interpretable fashion recommendation. IEEE Access 8, 68736–68746 (2020)

    Google Scholar 

  37. Yang, X., et al.: Interpretable fashion matching with rich attributes. In: SIGIR, pp. 775–784. ACM (2019)

    Google Scholar 

  38. Yin, R., Li, K., Lu, J., Zhang, G.: Enhancing fashion recommendation with visual compatibility relationship. In: WWW, pp. 3434–3440. ACM (2019)

    Google Scholar 

  39. Zhang, Y., Zhu, Z., He, Y., Caverlee, J.: Content-collaborative disentanglement representation learning for enhanced recommendation. In: RecSys, pp. 43–52. ACM (2020)

    Google Scholar 

  40. Zhu, Z., Wang, J., Caverlee, J.: Measuring and mitigating item under-recommendation bias in personalized ranking systems. In: SIGIR, pp. 449–458. ACM (2020)

    Google Scholar 

  41. Zou, Q., Zhang, Z., Wang, Q., Li, Q., Chen, L., Wang, S.: Who leads the clothing fashion: Style, color, or texture? A computational study. CoRR abs/1608.07444 (2016)

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge partial support of the projects: CTE Matera, ERP4.0, SECURE SAFE APULIA, Servizi Locali 2.0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Malitesta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deldjoo, Y., Di Noia, T., Malitesta, D., Merra, F.A. (2022). Leveraging Content-Style Item Representation for Visual Recommendation. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13186. Springer, Cham. https://doi.org/10.1007/978-3-030-99739-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99739-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99738-0

  • Online ISBN: 978-3-030-99739-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics