Skip to main content

Establishing Strong Baselines For TripClick Health Retrieval

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13186))

Included in the following conference series:

Abstract

We present strong Transformer-based re-ranking and dense retrieval baselines for the recently released TripClick health ad-hoc retrieval collection. We improve the – originally too noisy – training data with a simple negative sampling policy. We achieve large gains over BM25 in the re-ranking task of TripClick, which were not achieved with the original baselines. Furthermore, we study the impact of different domain-specific pre-trained models on TripClick. Finally, we show that dense retrieval outperforms BM25 by considerable margins, even with simple training procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The TripDatabase allows users to use different ranking schemes, such as popularity, source quality and pure relevance, as well as filtering results by facets. Unfortunately, this information is not available in the public dataset.

References

  1. Bajaj, P., et al.: MS MARCO: a human generated MAchine Reading COmprehension dataset. In: Proceedings of NIPS (2016)

    Google Scholar 

  2. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of EMNLP-IJCNLP (2019)

    Google Scholar 

  3. Chuklin, A., Markov, I., de Rijke, M.: Click Models for Web Search. Morgan & Claypool, San Rafael (2015)

    Book  Google Scholar 

  4. Cormack, G., Grossman, M.: Technology-assisted review in empirical medicine: waterloo participation in clef ehealth 2018. In CLEF (Working Notes) (2018)

    Google Scholar 

  5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL (2019)

    Google Scholar 

  6. Fernández-Pichel, M., Losada, D., Pichel, J.C., Elsweiler, D.: Citius at the trec 2020 health misinformation track (2020)

    Google Scholar 

  7. Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing (2020)

    Google Scholar 

  8. Hofstätter, S., Althammer, S., Schröder, M., Sertkan, M., Hanbury, A.: Improving efficient neural ranking models with cross-architecture knowledge distillation. arXiv preprint2010.02666 (2020)

    Google Scholar 

  9. Hofstätter, S., Hanbury, A.: Let’s measure run time! Extending the IR replicability infrastructure to include performance aspects. In: Proceedings of OSIRRC (2019)

    Google Scholar 

  10. Hofstätter, S., Lipani, A., Althammer, S., Zlabinger, M., Hanbury, A.: Mitigating the position bias of transformer models in passage re-ranking. In: Proceedings of ECIR (2021)

    Google Scholar 

  11. Hofstätter, S., Rekabsaz, N., Eickhoff, C., Hanbury, A.: On the effect of low-frequency terms on neural-IR models. In: Proceedings of SIGIR (2019)

    Google Scholar 

  12. Hofstätter, S., Zlabinger, M., Hanbury, A.: Interpretable & Time-Budget-Constrained Contextualization for Re-Ranking. In: Proceedings of ECAI (2020)

    Google Scholar 

  13. Khattab, O., Zaharia, M.: Colbert: efficient and effective passage search via contextualized late interaction over Bert. In: Proceedings of SIGIR (2020)

    Google Scholar 

  14. Li, M., Li, M., Xiong, K., Lin, J.: Multi-task dense retrieval via model uncertainty fusion for open-domain question answering. In: Findings of EMNLP (2021)

    Google Scholar 

  15. Lima, L.C., et al.: Denmark’s participation in the search engine TREC COVID-19 challenge: lessons learned about searching for precise biomedical scientific information on COVID-19. arXiv preprint2011.12684 (2020)

    Google Scholar 

  16. Lin, J.: A proposed conceptual framework for a representational approach to information retrieval. arXiv preprint2110.01529 (2021)

    Google Scholar 

  17. Lu, W., Jiao, J., Zhang, R.: Twinbert: distilling knowledge to twin-structured Bert models for efficient retrieval. arXiv preprint arXiv:2002.06275 (2020)

  18. Luan, Y., Eisenstein, J., Toutanova, K., Collins, M.: Sparse, dense, and attentional representations for text retrieval. arXiv preprint arXiv:2005.00181 (2020)

  19. MacAvaney, S., Cohan, A., Goharian, N.: Sledge: a simple yet effective baseline for COVID-19 scientific knowledge search. arXiv preprint2005.02365 (2020)

    Google Scholar 

  20. MacAvaney, S., Yates, A., Cohan, A., Goharian, N.: CEDR: contextualized embeddings for document ranking. In: Proceedings of SIGIR (2019)

    Google Scholar 

  21. McDonald, R., Brokos, G.-I., Androutsopoulos, I.: Deep relevance ranking using enhanced document-query interactions. arXiv preprint1809.01682 (2018)

    Google Scholar 

  22. Möller, T., Reina, A., Jayakumar, R., Pietsch, M.: COVID-QA: a question answering dataset for COVID-19. In: Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020, Online, July 2020. Association for Computational Linguistics (2020)

    Google Scholar 

  23. Nentidis, A., et al.: Overview of BioASQ 2020: the Eighth BioASQ challenge on large-scale biomedical semantic indexing and question answering, pp. 194–214, September 2020

    Google Scholar 

  24. Nogueira, R., Cho, K.: Passage re-ranking with bert. arXiv preprint arXiv:1901.04085 (2019)

  25. Paszke, A., et al.: Automatic differentiation in PYTORCH. In: Proceedings of NIPS-W (2017)

    Google Scholar 

  26. Reddy, R.G., et al.: End-to-end QA on COVID-19: domain adaptation with synthetic training. arXiv preprint2012.01414 (2020)

    Google Scholar 

  27. Rekabsaz, N., Lesota, O., Schedl, M., Brassey, J., Eickhoff, C.: Tripclick: the log files of a large health web search engine. arXiv preprint2103.07901 (2021)

    Google Scholar 

  28. Roberts, K., et al.:. Overview of the TREC 2019 precision medicine track. The ... text REtrieval Conference: TREC. Text REtrieval Conference, 26 (2019)

    Google Scholar 

  29. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of Bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  30. Tang, R., et al.: Rapidly bootstrapping a question answering dataset for COVID-19. CoRR, abs/2004.11339 (2020)

    Google Scholar 

  31. Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., Gurevych, I.: Beir: a heterogenous benchmark for zero-shot evaluation of information retrieval models. arXiv preprint arXiv:2104.08663 4 2021

  32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., et al.: Attention is all you need. In: Proceedings of NIPS (2017)

    Google Scholar 

  33. Voorhees, E., et al.: TREC-COVID: constructing a pandemic information retrieval test collection. ArXiv, abs/2005.04474 (2020)

    Google Scholar 

  34. Wang, K., Reimers, N., Gurevych, I.: TSDAE: using transformer-based sequential denoising auto-encoderfor unsupervised sentence embedding learning. arXiv preprint arXiv:2104.06979, April 2021

  35. Wang, L.L., et al.: CORD-19: the COVID-19 open research dataset. arXiv preprint2004.10706 (2020)

    Google Scholar 

  36. Wang, X.J., Grossman, M.R., Hyun, S.G.: Participation in TREC 2020 COVID track using continuous active learning. arXiv preprint2011.01453 (2020)

    Google Scholar 

  37. Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language processing. ArXiv, pages arXiv-1910 (2019)

    Google Scholar 

  38. Xiong, C., et al.: CMT in TREC-COVID round 2: mitigating the generalization gaps from web to special domain search. arXiv preprint2011.01580 (2020)

    Google Scholar 

  39. Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808 (2020)

  40. Yilmaz, Z.A., Yang, W., Zhang, H., Lin,J.: Cross-domain modeling of sentence-level evidence for document retrieval. In: Proceedings of EMNLP-IJCNLP (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Hofstätter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hofstätter, S., Althammer, S., Sertkan, M., Hanbury, A. (2022). Establishing Strong Baselines For TripClick Health Retrieval. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13186. Springer, Cham. https://doi.org/10.1007/978-3-030-99739-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99739-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99738-0

  • Online ISBN: 978-3-030-99739-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics