Abstract
We present strong Transformer-based re-ranking and dense retrieval baselines for the recently released TripClick health ad-hoc retrieval collection. We improve the – originally too noisy – training data with a simple negative sampling policy. We achieve large gains over BM25 in the re-ranking task of TripClick, which were not achieved with the original baselines. Furthermore, we study the impact of different domain-specific pre-trained models on TripClick. Finally, we show that dense retrieval outperforms BM25 by considerable margins, even with simple training procedures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The TripDatabase allows users to use different ranking schemes, such as popularity, source quality and pure relevance, as well as filtering results by facets. Unfortunately, this information is not available in the public dataset.
References
Bajaj, P., et al.: MS MARCO: a human generated MAchine Reading COmprehension dataset. In: Proceedings of NIPS (2016)
Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of EMNLP-IJCNLP (2019)
Chuklin, A., Markov, I., de Rijke, M.: Click Models for Web Search. Morgan & Claypool, San Rafael (2015)
Cormack, G., Grossman, M.: Technology-assisted review in empirical medicine: waterloo participation in clef ehealth 2018. In CLEF (Working Notes) (2018)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL (2019)
Fernández-Pichel, M., Losada, D., Pichel, J.C., Elsweiler, D.: Citius at the trec 2020 health misinformation track (2020)
Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing (2020)
Hofstätter, S., Althammer, S., Schröder, M., Sertkan, M., Hanbury, A.: Improving efficient neural ranking models with cross-architecture knowledge distillation. arXiv preprint2010.02666 (2020)
Hofstätter, S., Hanbury, A.: Let’s measure run time! Extending the IR replicability infrastructure to include performance aspects. In: Proceedings of OSIRRC (2019)
Hofstätter, S., Lipani, A., Althammer, S., Zlabinger, M., Hanbury, A.: Mitigating the position bias of transformer models in passage re-ranking. In: Proceedings of ECIR (2021)
Hofstätter, S., Rekabsaz, N., Eickhoff, C., Hanbury, A.: On the effect of low-frequency terms on neural-IR models. In: Proceedings of SIGIR (2019)
Hofstätter, S., Zlabinger, M., Hanbury, A.: Interpretable & Time-Budget-Constrained Contextualization for Re-Ranking. In: Proceedings of ECAI (2020)
Khattab, O., Zaharia, M.: Colbert: efficient and effective passage search via contextualized late interaction over Bert. In: Proceedings of SIGIR (2020)
Li, M., Li, M., Xiong, K., Lin, J.: Multi-task dense retrieval via model uncertainty fusion for open-domain question answering. In: Findings of EMNLP (2021)
Lima, L.C., et al.: Denmark’s participation in the search engine TREC COVID-19 challenge: lessons learned about searching for precise biomedical scientific information on COVID-19. arXiv preprint2011.12684 (2020)
Lin, J.: A proposed conceptual framework for a representational approach to information retrieval. arXiv preprint2110.01529 (2021)
Lu, W., Jiao, J., Zhang, R.: Twinbert: distilling knowledge to twin-structured Bert models for efficient retrieval. arXiv preprint arXiv:2002.06275 (2020)
Luan, Y., Eisenstein, J., Toutanova, K., Collins, M.: Sparse, dense, and attentional representations for text retrieval. arXiv preprint arXiv:2005.00181 (2020)
MacAvaney, S., Cohan, A., Goharian, N.: Sledge: a simple yet effective baseline for COVID-19 scientific knowledge search. arXiv preprint2005.02365 (2020)
MacAvaney, S., Yates, A., Cohan, A., Goharian, N.: CEDR: contextualized embeddings for document ranking. In: Proceedings of SIGIR (2019)
McDonald, R., Brokos, G.-I., Androutsopoulos, I.: Deep relevance ranking using enhanced document-query interactions. arXiv preprint1809.01682 (2018)
Möller, T., Reina, A., Jayakumar, R., Pietsch, M.: COVID-QA: a question answering dataset for COVID-19. In: Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020, Online, July 2020. Association for Computational Linguistics (2020)
Nentidis, A., et al.: Overview of BioASQ 2020: the Eighth BioASQ challenge on large-scale biomedical semantic indexing and question answering, pp. 194–214, September 2020
Nogueira, R., Cho, K.: Passage re-ranking with bert. arXiv preprint arXiv:1901.04085 (2019)
Paszke, A., et al.: Automatic differentiation in PYTORCH. In: Proceedings of NIPS-W (2017)
Reddy, R.G., et al.: End-to-end QA on COVID-19: domain adaptation with synthetic training. arXiv preprint2012.01414 (2020)
Rekabsaz, N., Lesota, O., Schedl, M., Brassey, J., Eickhoff, C.: Tripclick: the log files of a large health web search engine. arXiv preprint2103.07901 (2021)
Roberts, K., et al.:. Overview of the TREC 2019 precision medicine track. The ... text REtrieval Conference: TREC. Text REtrieval Conference, 26 (2019)
Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of Bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)
Tang, R., et al.: Rapidly bootstrapping a question answering dataset for COVID-19. CoRR, abs/2004.11339 (2020)
Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., Gurevych, I.: Beir: a heterogenous benchmark for zero-shot evaluation of information retrieval models. arXiv preprint arXiv:2104.08663 4 2021
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., et al.: Attention is all you need. In: Proceedings of NIPS (2017)
Voorhees, E., et al.: TREC-COVID: constructing a pandemic information retrieval test collection. ArXiv, abs/2005.04474 (2020)
Wang, K., Reimers, N., Gurevych, I.: TSDAE: using transformer-based sequential denoising auto-encoderfor unsupervised sentence embedding learning. arXiv preprint arXiv:2104.06979, April 2021
Wang, L.L., et al.: CORD-19: the COVID-19 open research dataset. arXiv preprint2004.10706 (2020)
Wang, X.J., Grossman, M.R., Hyun, S.G.: Participation in TREC 2020 COVID track using continuous active learning. arXiv preprint2011.01453 (2020)
Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language processing. ArXiv, pages arXiv-1910 (2019)
Xiong, C., et al.: CMT in TREC-COVID round 2: mitigating the generalization gaps from web to special domain search. arXiv preprint2011.01580 (2020)
Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808 (2020)
Yilmaz, Z.A., Yang, W., Zhang, H., Lin,J.: Cross-domain modeling of sentence-level evidence for document retrieval. In: Proceedings of EMNLP-IJCNLP (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hofstätter, S., Althammer, S., Sertkan, M., Hanbury, A. (2022). Establishing Strong Baselines For TripClick Health Retrieval. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13186. Springer, Cham. https://doi.org/10.1007/978-3-030-99739-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-99739-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99738-0
Online ISBN: 978-3-030-99739-7
eBook Packages: Computer ScienceComputer Science (R0)