Abstract
Online shopping is gaining more and more popularity everyday. Traditional retailers with physical stores adjust to this trend by allowing their customers to shop online as well as offline, i.e., in-store. Increasingly, customers can browse and purchase products across multiple shopping channels. Understanding how customer behavior relates to the availability of multiple shopping channels is an important prerequisite for many downstream machine learning tasks, such as recommendation and purchase prediction. However, previous work in this domain is limited to analyzing single-channel behavior only. In this project, we first provide a better understanding of the similarities and differences between online and offline behavior. We further study the next basket recommendation task in a multi-channel context, where the goal is to build recommendation algorithms that can leverage the rich cross-channel user behavior data in order to enhance the customer experience.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acquila-Natale, E., Iglesias-Pradas, S.: A matter of value? predicting channel preference and multichannel behaviors in retail. Technol. Forecast. Soc. Chang. 162, 120401 (2021)
Ariannezhad, M., Jullien, S., Nauts, P., Fang, M., Schelter, S., de Rijke, M.: Understanding multi-channel customer behavior in retail. In: CIKM 2021: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, 1–5 November 2021, pp. 2867–2871. ACM (2021)
Ariannezhad, M., Yahya, M., Meij, E., Schelter, S., de Rijke, M.: Understanding and learning from user interactions with financial company filings (2021, Under review)
Chatterjee, P.: Multiple-channel and cross-channel shopping behavior: role of consumer shopping orientations. Market. Intell. Plann. 28 (2010)
Chen, C., et al.: Predictive analysis by leveraging temporal user behavior and user embeddings. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, 22–26 October 2018, pp. 2175–2182. ACM (2018)
Faggioli, G., Polato, M., Aiolli, F.: Recency aware collaborative filtering for next basket recommendation. In: Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2020, Genoa, Italy, 12–18 July 2020, pp. 80–87. ACM (2020)
Gao, F., Agrawal, V., Cui, S.: The effect of multichannel and omnichannel retailing on physical stores. Manage. Sci. (2021)
Hendriksen, M., Kuiper, E., Nauts, P., Schelter, S., de Rijke, M.: Analyzing and predicting purchase intent in e-commerce: anonymous vs. identified customers. In: eCOM 2020: The 2020 SIGIIR Workshop on eCommerce. ACM (2020)
Hu, H., He, X.: Sets2sets: learning from sequential sets with neural networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019, pp. 1491–1499. ACM (2019)
Hu, H., He, X., Gao, J., Zhang, Z.: Modeling personalized item frequency information for next-basket recommendation. In: Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, 25–30 July 2020, pp. 1071–1080. ACM (2020)
Hult, G.T.M., Sharma, P.N., Morgeson, F.V., Zhang, Y.: Antecedents and consequences of customer satisfaction: do they differ across online and offline purchases? J. Retail. 95(1), 10–23 (2019)
Hussein, R.S., Kais, A.: Multichannel behaviour in the retail industry: evidence from an emerging market. Int. J. Log. Res. Appl. 24(3), 242–260 (2021)
Kooti, F., Lerman, K., Aiello, L.M., Grbovic, M., Djuric, N., Radosavljevic, V.: Portrait of an online shopper: understanding and predicting consumer behavior. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, San Francisco, CA, USA, 22–25 February 2016, pp. 205–214. ACM (2016)
Le, D., Lauw, H.W., Fang, Y.: Correlation-sensitive next-basket recommendation. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 2808–2814. ijcai.org (2019)
Li, M., Jullien, S., Ariannezhad, M., de Rijke, M.: A next basket recommendation reality check. CoRR abs/2109.14233 (2021). https://arxiv.org/abs/2109.14233
Li, M., Jullien, S., Ariannezhad, M., de Rijke, M.: TREX: a flexible repetition and exploration framework for next basket recommendation (2021, Under review)
Lo, C., Frankowski, D., Leskovec, J.: Understanding behaviors that lead to purchasing: a case study of Pinterest. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 531–540. ACM (2016)
Luo, P., Yan, S., Liu, Z., Shen, Z., Yang, S., He, Q.: From online behaviors to offline retailing. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 175–184. ACM (2016)
Qin, Y., Wang, P., Li, C.: The world is binary: contrastive learning for denoising next basket recommendation. In: SIGIR 2021: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, 11–15 July 2021, pp. 859–868. ACM (2021)
Su, N., He, J., Liu, Y., Zhang, M., Ma, S.: User intent, behaviour, and perceived satisfaction in product search. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, 5–9 February 2018, pp. 547–555. ACM (2018)
Sun, L., Bai, Y., Du, B., Liu, C., Xiong, H., Lv, W.: Dual sequential network for temporal sets prediction. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, Virtual Event, China, 25–30 July 2020, pp. 1439–1448. ACM (2020)
Toth, A., Tan, L., Fabbrizio, G.D., Datta, A.: Predicting shopping behavior with mixture of RNNs. In: Proceedings of the SIGIR 2017 Workshop On eCommerce co-located with the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, eCOM@SIGIR 2017, Tokyo, Japan, 11 August 2017, vol. 2311. CEUR-WS.org (2017)
Wan, M., Wang, D., Liu, J., Bennett, P., McAuley, J.J.: Representing and recommending shopping baskets with complementarity, compatibility and loyalty. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, 22–26 October 2018, pp. 1133–1142. ACM (2018)
Wang, P., Guo, J., Lan, Y.: Modeling retail transaction data for personalized shopping recommendation. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, 3–7 November 2014, pp. 1979–1982. ACM (2014)
Wen, Y.T., Yeh, P., Tsai, T., Peng, W., Shuai, H.: Customer purchase behavior prediction from payment datasets. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, 5–9 February 2018, pp. 628–636. ACM (2018)
Xia, Q., Jiang, P., Sun, F., Zhang, Y., Wang, X., Sui, Z.: Modeling consumer buying decision for recommendation based on multi-task deep learning. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, 22–26 October 2018, pp. 1703–1706. ACM (2018)
Yeo, J., Kim, S., Koh, E., Hwang, S., Lipka, N.: Browsing2purchase: online customer model for sales forecasting in an e-commerce site. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, 11–15 April 2016, Companion Volume, pp. 133–134. ACM (2016)
Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: A dynamic recurrent model for next basket recommendation. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, SIGIR 2016, Pisa, Italy, 17–21 July 2016, pp. 729–732. ACM (2016)
Yu, L., Sun, L., Du, B., Liu, C., Xiong, H., Lv, W.: Predicting temporal sets with deep neural networks. In: KDD 2020: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, 23–27 August 2020, pp. 1083–1091. ACM (2020)
Zhou, M., Ding, Z., Tang, J., Yin, D.: Micro behaviors: a new perspective in e-commerce recommender systems. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, 5–9 February 2018, pp. 727–735. ACM (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ariannezhad, M. (2022). Understanding and Learning from User Behavior for Recommendation in Multi-channel Retail. In: Hagen, M., et al. Advances in Information Retrieval. ECIR 2022. Lecture Notes in Computer Science, vol 13186. Springer, Cham. https://doi.org/10.1007/978-3-030-99739-7_56
Download citation
DOI: https://doi.org/10.1007/978-3-030-99739-7_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99738-0
Online ISBN: 978-3-030-99739-7
eBook Packages: Computer ScienceComputer Science (R0)