Skip to main content

A Dynamic Heterogeneous Graph Perception Network with Time-Based Mini-Batch for Information Diffusion Prediction

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13245))

Included in the following conference series:

Abstract

Information diffusion prediction is an important task to understand how information spreads among users. Most previous studies either only focused on the use of diffusion sequences, or only used social networks between users to make prediction, but such modeling is not sufficient to model the diffusion process. In this paper, we propose a novel Dynamic Heterogeneous Graph Perception Network with Time-Based Mini-Batch (DHGPNTM) that can combine dynamic diffusion graph and social graph for information diffusion prediction. First, we propose a Graph Perception Network (GPN) to learn user embedding in dynamic heterogeneous graphs, and combine temporal information with user embedding to capture users’ dynamic preferences. Then we use a multi-head attention to generate users’ context-dependence embedding, and design a fusion gate to selectively integrate users’ dynamic preferences and context-dependence embedding. The extensive experiments on real datasets demonstrate the effectiveness and efficiency of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi, T., Igata, N.: Rumor detection on twitter. In: SCIS&ISIS, pp. 452–457. IEEE (2012)

    Google Scholar 

  2. Wallinga, J., Teunis, P.: Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 160(6), 509–516 (2004)

    Article  Google Scholar 

  3. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web (TWEB) 1(1), 5-es (2007)

    Google Scholar 

  4. Li, H., Ma, X., Wang, F., Liu, J., Xu, K.: On popularity prediction of videos shared in online social networks. In: CIKM, pp. 169–178. ACM (2013)

    Google Scholar 

  5. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: SIGKDD, pp. 497–506. ACM (2009)

    Google Scholar 

  6. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  7. Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW, pp. 925–936 (2014)

    Google Scholar 

  8. Yang, Y., et al.: RAIN: social role-aware information diffusion. In: AAAI (2015)

    Google Scholar 

  9. Tsur, O., Rappoport, A.: What’s in a hashtag?: content based prediction of the spread of ideas in microblogging communities. In: WSDM, pp. 643–652. ACM (2012)

    Google Scholar 

  10. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: WSDM, pp. 241–250. ACM (2010)

    Google Scholar 

  11. Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.C.: Topological recurrent neural network for diffusion prediction. In: ICDM, pp. 475–484. IEEE (2017)

    Google Scholar 

  12. Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with attention-based recurrent neural network. In: IJCAI, pp. 2985–2991 (2017)

    Google Scholar 

  13. Islam, M.R., MUTHIAHS, A.: DeepDiffuse: predicting the ‘Who’ and ‘When’ in Cascades. In: ICDM, pp. 1055–1060. IEEE (2018)

    Google Scholar 

  14. Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with structure attention. In: CIKM, pp. 1795–1798. ACM (2018)

    Google Scholar 

  15. Bourigault, S., Lamprier, S., Gallinari, P.: Representation learning for information diffusion through social networks: an embedded cascade model. In: WSDM, pp. 573–582. ACM (2016)

    Google Scholar 

  16. Yang, C., Tang, J., Sun, M., Cui, G., Liu, Z.: Multi-scale information diffusion prediction with reinforced recurrent networks. In: IJCAI, pp. 4033–4039 (2019)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  18. Wang, H., Li, J., Luo, T.: Graph semantics based neighboring attentional entity alignment for knowledge graphs. In: ICIC, pp. 355–367 (2021)

    Google Scholar 

  19. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: AAAI (2018)

    Google Scholar 

  20. Zhang, X., Zhang, T., Zhao, W., Cui, Z., Yang, J.: Dual attention graph convolutional networks. In: IJCNN, pp. 238–251 (2019)

    Google Scholar 

  21. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  22. Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic heterogeneous graph convolutional network to learn user’s dynamic preferences for information diffusion prediction. In: PKDD, pp. 347–363 (2020)

    Google Scholar 

  23. Hodas, N.O., Lerman, K.: The simple rules of social contagion. Sci. Rep. 4(1), 1–7 (2014)

    Google Scholar 

  24. Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: ComSoc: adaptive transfer of user behaviors over composite social network. In: SIGKDD, pp. 696–704. ACM (2012)

    Google Scholar 

  25. Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural Diffusion Model for Microscopic Cascade Prediction. arXiv preprint arXiv:1812.08933 (2018)

  26. Huang, Z., Wang, Z., Zhang, R.: Cascade2vec: learning dynamic cascade representation by recurrent graph neural networks. IEEE Access 7, 144800–144812 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of Heilongjiang Province in China (No. LH2020F043), the Innovation Talents Project of Science and Technology Bureau of Harbin in China (No. 2017RAQXJ094), the Foundation of Graduate Innovative Research of Heilongjiang University in China (No. YJSCX2021-076HLJU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, W., Liu, M., Liu, Y. (2022). A Dynamic Heterogeneous Graph Perception Network with Time-Based Mini-Batch for Information Diffusion Prediction. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13245. Springer, Cham. https://doi.org/10.1007/978-3-031-00123-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00123-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00122-2

  • Online ISBN: 978-3-031-00123-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics