Skip to main content

Cascade-Enhanced Graph Convolutional Network for Information Diffusion Prediction

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13245))

Included in the following conference series:

Abstract

Information diffusion prediction aims to estimate the probability of an inactive user to be activated next in an information diffusion cascade. Existing works predict future user activation either by capturing sequential dependencies within the cascade or leveraging rich graph connections among users. However, most of them perform prediction based on user correlations within the current cascade without fully exploiting diffusion properties from other cascades, which may contain beneficial collaborative patterns for the current cascade. In this paper, we propose a novel Cascade-Enhanced Graph Convolutional Networks (CE-GCN), effectively exploiting collaborative patterns over cascades to enhance the prediction of future infections in the target cascade. Specifically, we explicitly integrate cascades into diffusion process modeling via a heterogeneous graph. Then, the collaborative patterns are explicitly injected into unified user embedding by message passing. Besides, we design a cascade-specific aggregator to adaptively refine user embeddings by modeling different effects of collaborative features from other cascades with the guidance of user context and time context in the current cascade. Extensive experiments on three public datasets demonstrate the effectiveness of the proposed model.

D. Wang and L. Wei—Both are first authors with equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.twitter.com.

  2. 2.

    https://www.douban.com.

  3. 3.

    http://memetracker.org/.

References

  1. Bourigault, S., Lamprier, S., Gallinari, P.: Representation learning for information diffusion through social networks: an embedded cascade model. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (WSDM), pp. 573–582 (2016)

    Google Scholar 

  2. Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: DeepHawkes: bridging the gap between prediction and understanding of information cascades. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM, pp. 1149–1158 (2017)

    Google Scholar 

  3. Chen, X., Zhang, K., Zhou, F., Trajcevski, G., Zhong, T., Zhang, F.: Information cascades modeling via deep multi-task learning. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 885–888 (2019)

    Google Scholar 

  4. Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: 23rd International World Wide Web Conference (WWW), pp. 925–936. ACM (2014)

    Google Scholar 

  5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010, vol. 9, pp. 249–256 (2010)

    Google Scholar 

  6. Gomez-Rodriguez, M., Balduzzi, D., Schölkopf, B.: Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML) pp. 561–568 (2011)

    Google Scholar 

  7. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1019–1028 (2010)

    Google Scholar 

  8. Hodas, N., Lerman, K.: The simple rules of social contagion. Scientific reports 4 (2014)

    Google Scholar 

  9. Islam, M.R., Muthiah, S., Adhikari, B., Prakash, B.A., Ramakrishnan, N.: Deepdiffuse: predicting the ‘who’ and ‘when’ in cascades. In: IEEE International Conference on Data Mining, (ICDM), pp. 1055–1060 (2018)

    Google Scholar 

  10. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 137–146 (2003)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  13. Leskovec, J., Backstrom, L., Kleinberg, J.M.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 497–506 (2009)

    Google Scholar 

  14. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: DeepInf: social influence prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp. 2110–2119 (2018)

    Google Scholar 

  15. Saito, K., Ohara, K., Yamagishi, Y., Kimura, M., Motoda, H.: Learning diffusion probability based on node attributes in social networks. In: Foundations of Intelligent Systems - 19th International Symposium (ISMIS), pp. 153–162 (2011)

    Google Scholar 

  16. Sankar, A., Zhang, X., Krishnan, A., Han, J.: Inf-VAE: A variational autoencoder framework to integrate homophily and influence in diffusion prediction. In: Caverlee, J., Hu, X.B., Lalmas, M., Wang, W. (eds.) The Thirteenth ACM International Conference on Web Search and Data Mining (WSDM), pp. 510–518 (2020)

    Google Scholar 

  17. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: The Semantic Web - 15th International Conference (ESWC), pp. 593–607 (2018)

    Google Scholar 

  18. Su, Y., Zhang, X., Wang, S., Fang, B., Zhang, T., Yu, P.S.: Understanding information diffusion via heterogeneous information network embeddings. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp. 501–516. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3_30

    Chapter  Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017 (NIPS), pp. 5998–6008 (2017)

    Google Scholar 

  20. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  21. Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.: Topological recurrent neural network for diffusion prediction. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 475–484 (2017)

    Google Scholar 

  22. Wang, Z., Chen, C., Li, W.: Attention network for information diffusion prediction. In: Companion of the Web Conference 2018 on the Web Conference 2018, WWW 2018, pp. 65–66 (2018)

    Google Scholar 

  23. Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with structure attention. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, (CIKM), pp. 1795–1798 (2018)

    Google Scholar 

  24. Wang, Z., Chen, C., Li, W.: Information diffusion prediction with network regularized role-based user representation learning. ACM Trans. Knowl. Discov. Data 13(3), 29:1–29:23 (2019)

    Google Scholar 

  25. Xian, Y., Fu, Z., Muthukrishnan, S., de Melo, G., Zhang, Y.: Reinforcement knowledge graph reasoning for explainable recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 285–294 (2019)

    Google Scholar 

  26. Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural diffusion model for microscopic cascade study. IEEE Trans. Knowl. Data Eng. 33(3), 1128–1139 (2021)

    Google Scholar 

  27. Yang, C., Tang, J., Sun, M., Cui, G., Liu, Z.: Multi-scale information diffusion prediction with reinforced recurrent networks. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), pp. 4033–4039 (2019)

    Google Scholar 

  28. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), pp. 7370–7377 (2019)

    Google Scholar 

  29. Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic heterogeneous graph convolutional network to learn users’ dynamic preferences for information diffusion prediction, pp. 347–363 (2020)

    Google Scholar 

  30. Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: Comsoc: adaptive transfer of user behaviors over composite social network. In: The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 696–704 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, D. et al. (2022). Cascade-Enhanced Graph Convolutional Network for Information Diffusion Prediction. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13245. Springer, Cham. https://doi.org/10.1007/978-3-031-00123-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00123-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00122-2

  • Online ISBN: 978-3-031-00123-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics