Abstract
Knowledge Graphs (KGs) aim at semantically representing the world’s knowledge in the form of machine-readable graphs composed of subject-relation-object triples (facts). However, most previous KGs only consider the relationship between individual entities, ignoring connections between facts and entities, which are commonly used to depict useful information about the properties of facts. To this end, we formally introduce FactKG, a new KG form which incorporates fact nodes and extends relations from entity-level to fact-level. This new structure challenges some previous KG techniques. One of the key challenges to FactKG is how to learn compatible representation of entities and facts. In this paper, we mainly focus on the embedding task of FactKG. We contribute a benchmark WD16K with additional fact-relevant relations, and a framework FactE, which can represent facts, entities and relations in the same space via attention. Experiments demonstrate that FactE not only significantly outperforms state-of-the-art models but also brings remarkable benefits for disambiguation of 1-N relations, revealing its potential usefulness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Fact-to-fact triples representing the relations between two facts (e.g., cause and effect) are not provided in Wikidata. We leave it for future work.
- 2.
Our codes and dataset can be available in http://github.com/davidlvxin/facte.
- 3.
We use the 20190506 snapshot of Wikidata.
References
Balažević, I., Allen, C., Hospedales, T.M.: Tucker: Tensor factorization for knowledge graph completion. In: EMNLP (2019)
Balažević, I., Allen, C., Hospedales, T.M.: Hypernetwork knowledge graph embeddings. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11731, pp. 553–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30493-5_52
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD (2008)
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS (2013)
Chen, Q., Zhu, X., Ling, Z.H., Inkpen, D., Wei, S.: Neural natural language inference models enhanced with external knowledge. In: ACL (2018)
Codd, E.F.: A relational model of data for large shared data banks. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 263–294. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-59412-0_16
Dasgupta, S.S., Ray, S.N., Talukdar, P.P.: Hyte: Hyperplane-based temporally aware knowledge graph embedding. In: EMNLP (2018)
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: AAAI (2018)
Ding, X., Liao, K., Liu, T., Li, Z.Y., Duan, J.: Event representation learning enhanced with external commonsense knowledge. In: EMNLP (2019)
Ding, X., Zhang, Y., Liu, T., Duan, J.: Knowledge-driven event embedding for stock prediction. In: COLING (2016)
García-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: EMNLP (2018)
Gottschalk, S., Demidova, E.: Eventkg: A multilingual event-centric temporal knowledge graph. In: ESWC (2018)
Guan, S., Jin, X., Wang, Y., Cheng, X.: Link prediction on n-ary relational data. In: WWW (2019)
Jiang, T., Liu, T., Ge, T., Sha, L., Chang, B., Li, S., Sui, Z.: Towards time-aware knowledge graph completion. In: COLING (2016)
Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: NeurIPS (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lautenschlager, J., Shellman, S., Ward, M.: Icews event aggregations. Harvard Dataverse 3 (2015)
Leetaru, K., Schrodt, P.A.: Gdelt: Global data on events, location, and tone, 1979–2012. In: ISA annual convention, vol. 2, pp. 1–49. Citeseer (2013)
Li, Z., Ding, X., Liu, T.: Constructing narrative event evolutionary graph for script event prediction. In: IJCAI (2018)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI (2015)
Mahdisoltani, F., Biega, J.A., Suchanek, F.M.: Yago3: A knowledge base from multilingual wikipedias. In: CIDR (2014)
Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: NAACL-HLT (2018)
Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A capsule network-based embedding model for knowledge graph completion and search personalization. In: NAACL (2019)
Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. In: AAAI (2015)
Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)
Saha, A., Ansari, G.A., Laddha, A., Sankaranarayanan, K., Chakrabarti, S.: Complex program induction for querying knowledge bases in the absence of gold programs. Trans. ACL 7, 185–200 (2019)
Sun, Y., et al.: Ernie: Enhanced representation through knowledge integration. arXiv preprint arXiv:1904.09223 (2019)
Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space. In: ICLR (2019)
Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: EMNLP (2015)
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML (2016)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base (2014)
Wen, J., Li, J., Mao, Y., Chen, S., Zhang, R.: On the representation and embedding of knowledge bases beyond binary relations. In: IJCAI (2016)
Yang, A., et al.: Enhancing pre-trained language representations with rich knowledge for machine reading comprehension. In: ACL (2019)
Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)
Acknowledgments
This work is supported by the National Key Research and Development Program of China (2020AAA0106501), the grants from the Institute for Guo Qiang, Tsinghua University (2019GQB0003) and Beijing Academy of Artificial Intelligence, and the NSFC Youth Project (62006136).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lv, X., Shi, J., Cao, S., Hou, L., Li, J. (2022). Triple-as-Node Knowledge Graph and Its Embeddings. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13245. Springer, Cham. https://doi.org/10.1007/978-3-031-00123-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-00123-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-00122-2
Online ISBN: 978-3-031-00123-9
eBook Packages: Computer ScienceComputer Science (R0)