Skip to main content

Triple-as-Node Knowledge Graph and Its Embeddings

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13245))

Included in the following conference series:

  • 3634 Accesses

Abstract

Knowledge Graphs (KGs) aim at semantically representing the world’s knowledge in the form of machine-readable graphs composed of subject-relation-object triples (facts). However, most previous KGs only consider the relationship between individual entities, ignoring connections between facts and entities, which are commonly used to depict useful information about the properties of facts. To this end, we formally introduce FactKG, a new KG form which incorporates fact nodes and extends relations from entity-level to fact-level. This new structure challenges some previous KG techniques. One of the key challenges to FactKG is how to learn compatible representation of entities and facts. In this paper, we mainly focus on the embedding task of FactKG. We contribute a benchmark WD16K with additional fact-relevant relations, and a framework FactE, which can represent facts, entities and relations in the same space via attention. Experiments demonstrate that FactE not only significantly outperforms state-of-the-art models but also brings remarkable benefits for disambiguation of 1-N relations, revealing its potential usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Fact-to-fact triples representing the relations between two facts (e.g., cause and effect) are not provided in Wikidata. We leave it for future work.

  2. 2.

    Our codes and dataset can be available in http://github.com/davidlvxin/facte.

  3. 3.

    We use the 20190506 snapshot of Wikidata.

References

  1. Balažević, I., Allen, C., Hospedales, T.M.: Tucker: Tensor factorization for knowledge graph completion. In: EMNLP (2019)

    Google Scholar 

  2. Balažević, I., Allen, C., Hospedales, T.M.: Hypernetwork knowledge graph embeddings. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11731, pp. 553–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30493-5_52

    Chapter  Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD (2008)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS (2013)

    Google Scholar 

  5. Chen, Q., Zhu, X., Ling, Z.H., Inkpen, D., Wei, S.: Neural natural language inference models enhanced with external knowledge. In: ACL (2018)

    Google Scholar 

  6. Codd, E.F.: A relational model of data for large shared data banks. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 263–294. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-59412-0_16

    Chapter  Google Scholar 

  7. Dasgupta, S.S., Ray, S.N., Talukdar, P.P.: Hyte: Hyperplane-based temporally aware knowledge graph embedding. In: EMNLP (2018)

    Google Scholar 

  8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: AAAI (2018)

    Google Scholar 

  9. Ding, X., Liao, K., Liu, T., Li, Z.Y., Duan, J.: Event representation learning enhanced with external commonsense knowledge. In: EMNLP (2019)

    Google Scholar 

  10. Ding, X., Zhang, Y., Liu, T., Duan, J.: Knowledge-driven event embedding for stock prediction. In: COLING (2016)

    Google Scholar 

  11. García-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: EMNLP (2018)

    Google Scholar 

  12. Gottschalk, S., Demidova, E.: Eventkg: A multilingual event-centric temporal knowledge graph. In: ESWC (2018)

    Google Scholar 

  13. Guan, S., Jin, X., Wang, Y., Cheng, X.: Link prediction on n-ary relational data. In: WWW (2019)

    Google Scholar 

  14. Jiang, T., Liu, T., Ge, T., Sha, L., Chang, B., Li, S., Sui, Z.: Towards time-aware knowledge graph completion. In: COLING (2016)

    Google Scholar 

  15. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: NeurIPS (2018)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Lautenschlager, J., Shellman, S., Ward, M.: Icews event aggregations. Harvard Dataverse 3 (2015)

    Google Scholar 

  18. Leetaru, K., Schrodt, P.A.: Gdelt: Global data on events, location, and tone, 1979–2012. In: ISA annual convention, vol. 2, pp. 1–49. Citeseer (2013)

    Google Scholar 

  19. Li, Z., Ding, X., Liu, T.: Constructing narrative event evolutionary graph for script event prediction. In: IJCAI (2018)

    Google Scholar 

  20. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI (2015)

    Google Scholar 

  21. Mahdisoltani, F., Biega, J.A., Suchanek, F.M.: Yago3: A knowledge base from multilingual wikipedias. In: CIDR (2014)

    Google Scholar 

  22. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  23. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: NAACL-HLT (2018)

    Google Scholar 

  24. Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A capsule network-based embedding model for knowledge graph completion and search personalization. In: NAACL (2019)

    Google Scholar 

  25. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. In: AAAI (2015)

    Google Scholar 

  26. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  27. Saha, A., Ansari, G.A., Laddha, A., Sankaranarayanan, K., Chakrabarti, S.: Complex program induction for querying knowledge bases in the absence of gold programs. Trans. ACL 7, 185–200 (2019)

    Google Scholar 

  28. Sun, Y., et al.: Ernie: Enhanced representation through knowledge integration. arXiv preprint arXiv:1904.09223 (2019)

  29. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space. In: ICLR (2019)

    Google Scholar 

  30. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: EMNLP (2015)

    Google Scholar 

  31. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML (2016)

    Google Scholar 

  32. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base (2014)

    Google Scholar 

  33. Wen, J., Li, J., Mao, Y., Chen, S., Zhang, R.: On the representation and embedding of knowledge bases beyond binary relations. In: IJCAI (2016)

    Google Scholar 

  34. Yang, A., et al.: Enhancing pre-trained language representations with rich knowledge for machine reading comprehension. In: ACL (2019)

    Google Scholar 

  35. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Research and Development Program of China (2020AAA0106501), the grants from the Institute for Guo Qiang, Tsinghua University (2019GQB0003) and Beijing Academy of Artificial Intelligence, and the NSFC Youth Project (62006136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, X., Shi, J., Cao, S., Hou, L., Li, J. (2022). Triple-as-Node Knowledge Graph and Its Embeddings. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13245. Springer, Cham. https://doi.org/10.1007/978-3-031-00123-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00123-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00122-2

  • Online ISBN: 978-3-031-00123-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics