Skip to main content

Multi-view Multi-behavior Contrastive Learning in Recommendation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13246))

Included in the following conference series:

Abstract

Multi-behavior recommendation (MBR) aims to jointly consider multiple behaviors to improve the target behavior’s performance. We argue that MBR models should: (1) model the coarse-grained commonalities between different behaviors of a user, (2) consider both individual sequence view and global graph view in multi-behavior modeling, and (3) capture the fine-grained differences between multiple behaviors of a user. In this work, we propose a novel Multi-behavior Multi-view Contrastive Learning Recommendation (MMCLR) framework, including three new CL tasks to solve the above challenges, respectively. The multi-behavior CL aims to make different user single-behavior representations of the same user in each view to be similar. The multi-view CL attempts to bridge the gap between a user’s sequence-view and graph-view representations. The behavior distinction CL focuses on modeling fine-grained differences of different behaviors. In experiments, we conduct extensive evaluations and ablation tests to verify the effectiveness of MMCLR and various CL tasks on two real-world datasets, achieving SOTA performance over existing baselines. Our code will be available on https://github.com/wyqing20/MMCLR.

Y. Wu and R. Xie—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://tianchi.aliyun.com/competition/entrance/231721/introduction.

References

  1. Chen, C., et al.: Graph heterogeneous multi-relational recommendation. In: Proceedings of AAAI (2021)

    Google Scholar 

  2. Chen, C., Zhang, M., Zhang, Y., Ma, W., Liu, Y., Ma, S.: Efficient heterogeneous collaborative filtering without negative sampling for recommendation. In: Proceedings of AAAI (2020)

    Google Scholar 

  3. Chen, X., et al: Sequential recommendation with user memory networks. In: Proceedings of WSDM (2018)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint (2018)

    Google Scholar 

  5. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of ICCV (2015)

    Google Scholar 

  6. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of SIGIR (2020)

    Google Scholar 

  7. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. In: ICLR (2016)

    Google Scholar 

  8. Huang, J.T., et al.: Embedding-based retrieval in Facebook search. In: Proceedings of KDD (2020)

    Google Scholar 

  9. Jin, B., Gao, C., He, X., Jin, D., Li, Y.: Multi-behavior recommendation with graph convolutional networks. In: Proceedings of SIGIR (2020)

    Google Scholar 

  10. Pan, F., Li, S., Ao, X., Tang, P., He, Q.: Warm up cold-start advertisements: improving CTR predictions via learning to learn ID embeddings. In: Proceedings of SIGIR, pp. 695–704 (2019)

    Google Scholar 

  11. Pan, W., Xiang, E., Liu, N., Yang, Q.: Transfer learning in collaborative filtering for sparsity reduction. In: Proceedings of AAAI, vol. 24 (2010)

    Google Scholar 

  12. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of KDD (2014)

    Google Scholar 

  13. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint (2012)

    Google Scholar 

  14. Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: Proceedings of KDD, pp. 650–658 (2008)

    Google Scholar 

  15. Sun, F., et al.: BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer. In: Proceedings of CIKM (2019)

    Google Scholar 

  16. Wang, W., et al.: Beyond clicks: modeling multi-relational item graph for session-based target behavior prediction. In: Proceedings of WWW (2020)

    Google Scholar 

  17. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of SIGIR (2019)

    Google Scholar 

  18. Wu, J., et al.: Self-supervised graph learning for recommendation. In: Proceedings of SIGIR (2021)

    Google Scholar 

  19. Xi, D., et al.: Modeling the sequential dependence among audience multi-step conversions with multi-task learning in targeted display advertising. In: Proceedings of KDD (2021)

    Google Scholar 

  20. Xi, D., et al.: Neural hierarchical factorization machines for user’s event sequence analysis. In: Proceedings of SIGIR, pp. 1893–1896 (2020)

    Google Scholar 

  21. Xia, L., et al.: Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation. In: Proceedings of AAAI (2021)

    Google Scholar 

  22. Xia, L., Xu, Y., Huang, C., Dai, P., Bo, L.: Graph meta network for multi-behavior recommendation. In: Proceedings of SIGIR (2021)

    Google Scholar 

  23. Xiao, C., et al.: UPRec: user-aware pre-training for recommender systems. arXiv preprint (2021)

    Google Scholar 

  24. Xie, R., Liu, Q., Wang, L., Liu, S., Zhang, B., Lin, L.: Contrastive cross-domain recommendation in matching (2021)

    Google Scholar 

  25. Xie, R., Liu, Y., Zhang, S., Wang, R., Xia, F., Lin, L.: Personalized approximate pareto-efficient recommendation. In: Proceedings of the Web Conference 2021, pp. 3839–3849 (2021)

    Google Scholar 

  26. Xie, R., Qiu, Z., Rao, J., Liu, Y., Zhang, B., Lin, L.: Internal and contextual attention network for cold-start multi-channel matching in recommendation. In: Proceedings of IJCAI, pp. 2732–2738 (2020)

    Google Scholar 

  27. Xie, R., et al.: Long short-term temporal meta-learning in online recommendation. In: Proceedings of WSDM (2022)

    Google Scholar 

  28. Xie, X., et al.: Contrastive learning for sequential recommendation. arXiv preprint (2020)

    Google Scholar 

  29. Ying, H., et al.: Sequential recommender system based on hierarchical attention network. In: Proceedings of IJCAI (2018)

    Google Scholar 

  30. Zeng, Z., et al.: Knowledge transfer via pre-training for recommendation: a review and prospect. Front. Big Data 4, 602071 (2021)

    Google Scholar 

  31. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

  32. Zhang, W., Mao, J., Cao, Y., Xu, C.: Multiplex graph neural networks for multi-behavior recommendation. In: Proceedings of CIKM (2020)

    Google Scholar 

  33. Zheng, Y., Gao, C., He, X., Li, Y., Jin, D.: Price-aware recommendation with graph convolutional networks. In: Proceedings of ICDE (2020)

    Google Scholar 

  34. Zhou, C., et al.: ATRank: an attention-based user behavior modeling framework for recommendation. In: Proceedings of AAAI (2018)

    Google Scholar 

  35. Zhou, G., et al.: Deep interest network for click-through rate prediction. In: Proceedings of KDD (2018)

    Google Scholar 

  36. Zhou, K., et al.: S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization. In: Proceedings of CIKM (2020)

    Google Scholar 

  37. Zhu, Y., et al.: Transfer-meta framework for cross-domain recommendation to cold-start users. In: Proceedings of SIGIR (2021)

    Google Scholar 

  38. Zhu, Y., et al.: Personalized transfer of user preferences for cross-domain recommendation. In: Proceedings of WSDM (2021)

    Google Scholar 

  39. Zhu, Y., et al.: Learning to warm up cold item embeddings for cold-start recommendation with meta scaling and shifting networks. In: Proceedings of SIGIR (2021)

    Google Scholar 

  40. Zhu, Y.: Multi-representation adaptation network for cross-domain image classification. Neural Netw. 119, 214–221 (2019)

    Google Scholar 

  41. Zhu, Y., et al.: Deep subdomain adaptation network for image classification. IEEE Trans. Neural Netw. Learn. Syst. 32, 1713–1722 (2020)

    Google Scholar 

  42. Zhuang, F., et al.: A comprehensive survey on transfer learning. In: Proceedings of the IEEE (2020)

    Google Scholar 

Download references

Acknowledgments

The research work supported by the National Natural Science Foundation of China under Grant No. 61976204, U1811461, U1836206. Xiang Ao is also supported by the Project of Youth Innovation Promotion Association CAS, Beijing Nova Program Z201100006820062.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuzhen Zhuang or Qing He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y. et al. (2022). Multi-view Multi-behavior Contrastive Learning in Recommendation. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13246. Springer, Cham. https://doi.org/10.1007/978-3-031-00126-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00126-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00125-3

  • Online ISBN: 978-3-031-00126-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics