Abstract
Multi-behavior recommendation (MBR) aims to jointly consider multiple behaviors to improve the target behavior’s performance. We argue that MBR models should: (1) model the coarse-grained commonalities between different behaviors of a user, (2) consider both individual sequence view and global graph view in multi-behavior modeling, and (3) capture the fine-grained differences between multiple behaviors of a user. In this work, we propose a novel Multi-behavior Multi-view Contrastive Learning Recommendation (MMCLR) framework, including three new CL tasks to solve the above challenges, respectively. The multi-behavior CL aims to make different user single-behavior representations of the same user in each view to be similar. The multi-view CL attempts to bridge the gap between a user’s sequence-view and graph-view representations. The behavior distinction CL focuses on modeling fine-grained differences of different behaviors. In experiments, we conduct extensive evaluations and ablation tests to verify the effectiveness of MMCLR and various CL tasks on two real-world datasets, achieving SOTA performance over existing baselines. Our code will be available on https://github.com/wyqing20/MMCLR.
Y. Wu and R. Xie—Equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, C., et al.: Graph heterogeneous multi-relational recommendation. In: Proceedings of AAAI (2021)
Chen, C., Zhang, M., Zhang, Y., Ma, W., Liu, Y., Ma, S.: Efficient heterogeneous collaborative filtering without negative sampling for recommendation. In: Proceedings of AAAI (2020)
Chen, X., et al: Sequential recommendation with user memory networks. In: Proceedings of WSDM (2018)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint (2018)
Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of ICCV (2015)
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of SIGIR (2020)
Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. In: ICLR (2016)
Huang, J.T., et al.: Embedding-based retrieval in Facebook search. In: Proceedings of KDD (2020)
Jin, B., Gao, C., He, X., Jin, D., Li, Y.: Multi-behavior recommendation with graph convolutional networks. In: Proceedings of SIGIR (2020)
Pan, F., Li, S., Ao, X., Tang, P., He, Q.: Warm up cold-start advertisements: improving CTR predictions via learning to learn ID embeddings. In: Proceedings of SIGIR, pp. 695–704 (2019)
Pan, W., Xiang, E., Liu, N., Yang, Q.: Transfer learning in collaborative filtering for sparsity reduction. In: Proceedings of AAAI, vol. 24 (2010)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of KDD (2014)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint (2012)
Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: Proceedings of KDD, pp. 650–658 (2008)
Sun, F., et al.: BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer. In: Proceedings of CIKM (2019)
Wang, W., et al.: Beyond clicks: modeling multi-relational item graph for session-based target behavior prediction. In: Proceedings of WWW (2020)
Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of SIGIR (2019)
Wu, J., et al.: Self-supervised graph learning for recommendation. In: Proceedings of SIGIR (2021)
Xi, D., et al.: Modeling the sequential dependence among audience multi-step conversions with multi-task learning in targeted display advertising. In: Proceedings of KDD (2021)
Xi, D., et al.: Neural hierarchical factorization machines for user’s event sequence analysis. In: Proceedings of SIGIR, pp. 1893–1896 (2020)
Xia, L., et al.: Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation. In: Proceedings of AAAI (2021)
Xia, L., Xu, Y., Huang, C., Dai, P., Bo, L.: Graph meta network for multi-behavior recommendation. In: Proceedings of SIGIR (2021)
Xiao, C., et al.: UPRec: user-aware pre-training for recommender systems. arXiv preprint (2021)
Xie, R., Liu, Q., Wang, L., Liu, S., Zhang, B., Lin, L.: Contrastive cross-domain recommendation in matching (2021)
Xie, R., Liu, Y., Zhang, S., Wang, R., Xia, F., Lin, L.: Personalized approximate pareto-efficient recommendation. In: Proceedings of the Web Conference 2021, pp. 3839–3849 (2021)
Xie, R., Qiu, Z., Rao, J., Liu, Y., Zhang, B., Lin, L.: Internal and contextual attention network for cold-start multi-channel matching in recommendation. In: Proceedings of IJCAI, pp. 2732–2738 (2020)
Xie, R., et al.: Long short-term temporal meta-learning in online recommendation. In: Proceedings of WSDM (2022)
Xie, X., et al.: Contrastive learning for sequential recommendation. arXiv preprint (2020)
Ying, H., et al.: Sequential recommender system based on hierarchical attention network. In: Proceedings of IJCAI (2018)
Zeng, Z., et al.: Knowledge transfer via pre-training for recommendation: a review and prospect. Front. Big Data 4, 602071 (2021)
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Zhang, W., Mao, J., Cao, Y., Xu, C.: Multiplex graph neural networks for multi-behavior recommendation. In: Proceedings of CIKM (2020)
Zheng, Y., Gao, C., He, X., Li, Y., Jin, D.: Price-aware recommendation with graph convolutional networks. In: Proceedings of ICDE (2020)
Zhou, C., et al.: ATRank: an attention-based user behavior modeling framework for recommendation. In: Proceedings of AAAI (2018)
Zhou, G., et al.: Deep interest network for click-through rate prediction. In: Proceedings of KDD (2018)
Zhou, K., et al.: S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization. In: Proceedings of CIKM (2020)
Zhu, Y., et al.: Transfer-meta framework for cross-domain recommendation to cold-start users. In: Proceedings of SIGIR (2021)
Zhu, Y., et al.: Personalized transfer of user preferences for cross-domain recommendation. In: Proceedings of WSDM (2021)
Zhu, Y., et al.: Learning to warm up cold item embeddings for cold-start recommendation with meta scaling and shifting networks. In: Proceedings of SIGIR (2021)
Zhu, Y.: Multi-representation adaptation network for cross-domain image classification. Neural Netw. 119, 214–221 (2019)
Zhu, Y., et al.: Deep subdomain adaptation network for image classification. IEEE Trans. Neural Netw. Learn. Syst. 32, 1713–1722 (2020)
Zhuang, F., et al.: A comprehensive survey on transfer learning. In: Proceedings of the IEEE (2020)
Acknowledgments
The research work supported by the National Natural Science Foundation of China under Grant No. 61976204, U1811461, U1836206. Xiang Ao is also supported by the Project of Youth Innovation Promotion Association CAS, Beijing Nova Program Z201100006820062.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, Y. et al. (2022). Multi-view Multi-behavior Contrastive Learning in Recommendation. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13246. Springer, Cham. https://doi.org/10.1007/978-3-031-00126-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-00126-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-00125-3
Online ISBN: 978-3-031-00126-0
eBook Packages: Computer ScienceComputer Science (R0)