Abstract
In this paper, we propose a dual-process cognitive recommendation system for sequential recommendations. The framework includes an intuitive representation module (System 1) and an inference module (System 2). System 1 is designed to understand the user’s historical interaction sequences with external knowledge graph. System 2 is built to make recommendations by reinforcement learning to consider long-term returns and diversity. We demonstrate the performance of our method on a wide range of recommendation datasets. Experiments show significant improvement over the state-of-the-art models regarding both relevance and diversity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Calandriello, D., Derezinski, M., Valko, M.: Sampling from a k-DPP without looking at all items. Adv. Neural. Inf. Process. Syst. 33, 6889–6899 (2020)
Chen, L., Zhang, G., Zhou, E.: Fast greedy MAP inference for determinantal point process to improve recommendation diversity. In: Advances in Neural Information Processing Systems, vol. 31, pp. 5622–5633. Curran Associates, Inc. (2018)
Chen, S.Y., Yu, Y., Da, Q., Tan, J., Huang, H.K., Tang, H.H.: Stabilizing reinforcement learning in dynamic environment with application to online recommendation. In: SIGKDD, pp. 1187–1196 (2018)
Chen, X., Huang, C., Yao, L., Wang, X., Liu, W., Zhang, W.: Knowledge-guided deep reinforcement learning for interactive recommendation. arXiv preprint arXiv:2004.08068 (2020)
Chen, X., et al.: Sequential recommendation with user memory networks. In: WSDM, pp. 108–116 (2018)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP, pp. 1724–1734 (2014)
Evans, J.S.B.: Dual-processing accounts of reasoning, judgment, and social cognition. Annu. Rev. Psychol. 59, 255–278 (2008)
Gan, L., Nurbakova, D., Laporte, L., Calabretto, S.: Enhancing recommendation diversity using determinantal point processes on knowledge graphs. In: SIGIR, pp. 2001–2004 (2020)
Geng, H., Yu, S., Gao, X.: Gated sequential recommendation system with social and textual information under dynamic contexts. In: Jensen, C.S., et al. (eds.) DASFAA 2021. LNCS, vol. 12683, pp. 3–19. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73200-4_1
Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. CoRR abs/1511.06939 (2016)
Huang, J., Zhao, W.X., Dou, H., Wen, J.R., Chang, E.Y.: Improving sequential recommendation with knowledge-enhanced memory networks. In: SIGIR, pp. 505–514 (2018)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)
Kunaver, M., Požrl, T.: Diversity in recommender systems-a survey. Knowl.-Based Syst. 123, 154–162 (2017)
Lei, W., et al.: Interactive path reasoning on graph for conversational recommendation. In: SIGKDD, pp. 2073–2083 (2020)
Liu, Q., et al.: Building personalized simulator for interactive search. In: IJCAI, pp. 5109–5115 (2019)
Lu, G., Zhao, Z., Gao, X., Chen, G.: SRecGAN: pairwise adversarial training for sequential recommendation. In: Jensen, C.S., et al. (eds.) DASFAA 2021. LNCS, vol. 12683, pp. 20–35. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73200-4_2
McAuley, J., Targett, C., Shi, Q., Van Den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR, pp. 43–52 (2015)
Miyamoto, S., Zamami, T., Yamana, H.: Improving recommendation diversity across users by reducing frequently recommended items. In: Big Data, pp. 5392–5394. IEEE (2018)
Schedl, M.: The LFM-1b dataset for music retrieval and recommendation. In: ICMR, pp. 103–110 (2016)
Song, W., Duan, Z., Yang, Z., Zhu, H., Zhang, M., Tang, J.: Ekar: an explainable method for knowledge aware recommendation. arXiv preprint arXiv:1906.09506 (2019)
Tang, J., et al.: Towards neural mixture recommender for long range dependent user sequences. In: The World Wide Web Conference, pp. 1782–1793 (2019)
Wang, H., et al.: RippleNet: propagating user preferences on the knowledge graph for recommender systems. In: CIKM, pp. 417–426 (2018)
Wang, P., Fan, Y., Xia, L., Zhao, W.X., Niu, S., Huang, J.: KERL: a knowledge-guided reinforcement learning model for sequential recommendation. In: SIGIR, pp. 209–218 (2020)
Wang, S., Hu, L., Cao, L., Huang, X., Lian, D., Liu, W.: Attention-based transactional context embedding for next-item recommendation. In: AAAI, pp. 2532–2539 (2018)
Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: SIGKDD, pp. 950–958 (2019)
Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. In: AAAI, vol. 33, pp. 346–353 (2019)
Xian, Y., Fu, Z., Muthukrishnan, S., De Melo, G., Zhang, Y.: Reinforcement knowledge graph reasoning for explainable recommendation. In: SIGIR, pp. 285–294 (2019)
Xin, X., Karatzoglou, A., Arapakis, I., Jose, J.M.: Self-supervised reinforcement learning for recommender systems. In: SIGIR, pp. 931–940 (2020)
Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J.M., He, X.: A simple convolutional generative network for next item recommendation. In: WSDM, pp. 582–590 (2019)
Zhang, Z., Lu, T., Li, D., Zhang, P., Gu, H., Gu, N.: SANS: setwise attentional neural similarity method for few-shot recommendation. In: Jensen, C.S., et al. (eds.) DASFAA 2021. LNCS, vol. 12683, pp. 69–84. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73200-4_5
Zhao, X., Zhang, L., Ding, Z., Xia, L., Tang, J., Yin, D.: Recommendations with negative feedback via pairwise deep reinforcement learning. In: SIGKDD, pp. 1040–1048 (2018)
Zheng, G., et al.: DRN: a deep reinforcement learning framework for news recommendation. In: Proceedings of the 2018 World Wide Web Conference, pp. 167–176 (2018)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gao, Y. et al. (2022). Efficient Dual-Process Cognitive Recommender Balancing Accuracy and Diversity. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13247. Springer, Cham. https://doi.org/10.1007/978-3-031-00129-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-00129-1_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-00128-4
Online ISBN: 978-3-031-00129-1
eBook Packages: Computer ScienceComputer Science (R0)