Skip to main content

LSD: Discrimination of Coal Mining Accident’s Causes Based on Ensemble Machine Learning

  • Conference paper
  • First Online:
Recent Advances in Soft Computing and Data Mining (SCDM 2022)

Abstract

Pakistan is one of the major coal producing country and also have the most serious coal mine accidents around the world. The proposed study performs experiments on a dataset contain reviews based on accident reasons occurred during mining work to reduce the accident rate. The aim of this study achieved by categorizing the reasons into different classes on the behalf of human behavior, roof dropping, and smoke inhalation. Then perform preprocessing on the reviews to clean the data. After preprocessing, the bag-of-words and TF-IDF are used singly and in combination to preserve meaningful information in extracted feature form. Finally, the Random Forest, Naive Bayes classifier, SVM, Decision Tree, Logistic Regression and proposed ensemble LSD (LR+SVM+DT) models are used to classify the accident reasons to analyze the most occurring once. The performance of the proposed approach is evaluated using average accuracy, precision, recall, and f1 score. The experiments reveal that a combined feature improved the performance of machine learning models. Ensemble LSD outperforms the other models and achieves 94% true acceptance rate when combined with TF-IDF and Bag of words.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. GOP, Pakistan 2025: One Nation One Vision, Ministry of Planning, Development and Reform, Government of Pakistan, Islamabad (2014)

    Google Scholar 

  2. Haibin, L., Guangrong, L.: Study on characteristics of coal mine intrinsic safety and strategies of management. China Saf. Sci. J. 17(4), 67–72 (2007)

    Google Scholar 

  3. Wang, C., Zhang, C.L., Liu, L.: Analysis on coal mine safety status in China and its countermeasures. Appl. Mech. Mater. 448–453, 3814–3817 (2014)

    Google Scholar 

  4. Husain, V.: Obstacles in the sustainable development of artisanaland small-scale mines in Pakistan and remedial measures. Geol. Soc. Lond. Spec. Publ. 250(1), 135–140 (2005). https://doi.org/10.1144/GSL.SP.2005.250.01.13

    Article  Google Scholar 

  5. Jadoon, K.G., Akbar, S., Edwards, J.S.: Safety trends in small-scale coal mines in developing countries with particular reference to China: India

    Google Scholar 

  6. Joy, J.: Occupational safety risk management in Australian mining. Occup. Med. 54(5), 311–315 (2004)

    Article  Google Scholar 

  7. Sari, M., Duzgun, S., Karpuz, C., Sevtap, Selçuk, A.: Accident analysis of two Turkish underground coal mines. Saf. Sci 42(8), 675–690 (2004). https://doi.org/10.1016/j.ssci.2003.11.002

  8. Chu, C., Jain, R., Muradian, N., Zhang, G.: Statistical analysis of coal mining safety in China with reference to the impact of technology. J. South Afr. Inst. Min. Metall. 116(1), 73–78 (2016)

    Article  Google Scholar 

  9. Wu, L., Jiang, Z., Cheng, W., Zuo, X., Lv, D., Yao, Y.: Major accident analysis and prevention of coal mines in China from the year of 1949 to 2009. Min. Sci. Technol. (China) 21(5), 693–699 (2011)

    Article  Google Scholar 

  10. Karra, V.K.: Analysis of non-fatal and fatal injury rates for mine operator and contractor employees and the influence of work location. J. Saf. Res. 36, 413–421 (2005)

    Article  Google Scholar 

  11. Gerassis, S., Saavedra, A., Taboada, J., Alonso, E., Fernando, G., Alonso, E.: Differentiating between fatal and non-fatal mining accidents using artificial intelligence techniques. 0930 (2019)

    Google Scholar 

  12. Sanmiquel, L., Bascompta, M., Rossell, J.M., Anticoi, H.F., Guash, E.: Analysis of occupational accidents in underground and surface mining in Spain using data-mining techniques. Int. J. Environ. Res. Public Health 15(3), 462 (2018)

    Article  Google Scholar 

  13. Bennett, J.D., Passmore, D.L.: Probability of death, disability, and restricted work activity in United States underground bituminous coal mines, 1975–1981. J. Saf. Res. 15(2), 69–76 (1984)

    Article  Google Scholar 

  14. Sanmiquel, L., Rossell, J.M., Vintro, C.: Study of Spanish mining accidents using data mining techniques. Saf. Sci. 75, 49–55 (2015)

    Article  Google Scholar 

  15. Ajayi, A., Oyedele, L., Delgado, J.M.D., Akanbi, L., Bilal, M., Akinade, O., Olawale, O.: Big data platform for health and safety accident prediction. World J. Sci. Technol. Sustain. Dev. (2019)

    Google Scholar 

  16. Hull, B.P., Leigh, J., Driscoll, T.R., Mandryk, J.: Factors associated with occupational injury severity in the New South Wales underground coal mining industry. SSDlO925-7535 (95) 00064-X (1996)

    Google Scholar 

  17. Xu, J., Lv, X.: Establishing a georeferenced spatio-temporal database for Chinese coal mining accidents between 2000 and 2015 (2018)

    Google Scholar 

  18. Mengmeng, P., Qing, L., Chuanpeng X.: Towards Consistent Interpretations of Coal Geochemistry Data on Whole-Coal versus Ash Bases through Machine Learning Na Xu 1. Minerals 10, 328 (2020)

    Google Scholar 

  19. Issac, B., Jap, W.J.: Implementing spam detection using Bayesian and porter stemmer keyword stripping approaches. In: Proceedings of IEEE Region Conference (TENCON), pp. 1–5 (2009)

    Google Scholar 

  20. Joulin, A.E., Grave, P., Bojanowski, M.T.: Bag of tricks for efficient text classification arXiv:1607.01759 (2016)

  21. Huang, Y., J., Powers, R., Montelione, G.T.: Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J. Am. Chem. Soc. 127(6), 1665–1674 (2005)

    Google Scholar 

  22. Mathanker, S.K., Weckler, P.R., Bowser, T.J., Wang, N., Maness, N.O.: Adaboost classifiers for pecan defect classification. Comput. Electron. Agric. 77(1), 60–68 (2011)

    Article  Google Scholar 

  23. Guzman, E., El-Haliby, M., Bruegge, B.: Ensemble methods for app review classification: an approach for software evolution (N). In: Proceedings of 30th IEEE (2015)

    Google Scholar 

  24. Rustam, F., Ashraf, I., Mehmood, A., Ullah, S., Choi, G.: Tweets classification on the base of sentiments for US airline companies. Entropy 21(11), 1078 (2019)

    Article  Google Scholar 

  25. Elorrieta, F., et al.: A machine learned classifier for RR Ly

    Google Scholar 

  26. Heaton, J.: An empirical analysis of feature engineering for predictive modelling. In: Proceedings of SoutheastCon, pp. 1–6 (2016)

    Google Scholar 

  27. Hu, X., Downie, J.S., Ehmann, A.F.: Lyric text mining in music mood classification. Am. Music 183(5), 2–209 (2009)

    Google Scholar 

  28. Yu, B.: An evaluation of text classification methods for literary study. Literary Linguistic Comput. 23(3), 327–343 (2008)

    Article  Google Scholar 

  29. Mushtaq, M.F.: BHCNet: neural network-based brain hemorrhage classification using head CT Scan. IEEE Access 9, 113901–113916 (2021)

    Article  Google Scholar 

  30. Loper, E., Bird, S.: NLTK: the natural language toolkit arXiv:cs/0205028 (2002)

  31. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

    Google Scholar 

  32. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.: Random forest: a classification and regression tool for compound classification and QSAR modelling. J. Chem. Inf. Comput. Sci 43(6), 1947–1958 (2003)

    Article  Google Scholar 

  33. Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016)

    Article  MathSciNet  Google Scholar 

  34. Breiman, L.: Bagging predictors. Mach. Learn 24(2), 123–140 (1996)

    MATH  Google Scholar 

  35. Schapire, R.E.: A brief introduction to boosting. In: Proceedings of IJCAI, vol. 99, pp. 1401–1406 (1999)

    Google Scholar 

  36. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  37. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv 34(1), 1–47 (2002)

    Article  Google Scholar 

  38. Zhang, F., Zhenqi, H., Yaokun, F., Kun, Y., Qunying, W., Zewei, F.: A new identification method for surface cracks from UAV images based on machine learning in coal mining areas. Remote Sens. 12(10), 1571 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faheem Mushtaq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Javaid, M.A. et al. (2022). LSD: Discrimination of Coal Mining Accident’s Causes Based on Ensemble Machine Learning. In: Ghazali, R., Mohd Nawi, N., Deris, M.M., Abawajy, J.H., Arbaiy, N. (eds) Recent Advances in Soft Computing and Data Mining. SCDM 2022. Lecture Notes in Networks and Systems, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-031-00828-3_39

Download citation

Publish with us

Policies and ethics