Skip to main content

Multi-modal Ensembles of Regressor Chains for Multi-output Prediction

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XX (IDA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13205))

Included in the following conference series:

Abstract

Multi-target regression is a predictive task involving multiple numerical outputs per instance. In the domain of multi-label classification there exist a large number of techniques that successfully model outputs together. Classifier Chains is one such example that is naturally extendable to the multi-target regression task (as Regressor Chains). However, although this method is straightforward to adapt to the regression setting, large improvements over independent models (as seen already in the multi-label classification context over the recent decade) have not as of yet been obtained from Regressor Chains. One of the reasons for this is the adoption of squared-error-based loss metrics which do not require consideration of joint-target modeling. In this paper, we consider cases where the predictive distribution can be multi-modal. Such a scenario, which easily manifests in real-world tasks involving uncertainty, motivates a different loss metric and, thereby, a different approach. We thus present a new method for multi-target regression: Multi-Modal Ensemble of Regressor Chains (mmERC), which performs competitively on datasets exhibiting a multi-modal distribution, both against independent regressors and state-of-the-art ensembles of regressor chains. We argue that such distributions are not sufficiently considered in the regression and particularly multi-target regression literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassett, R., Deride, J.: Maximum a posteriori estimators as a limit of Bayes estimators. Math. Program. 174, 129–144 (2018). https://doi.org/10.1007/s10107-018-1241-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Burger, M., Lucka, F.: Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators. Inverse Probl. 30(11), 114004 (2014). https://doi.org/10.1088/0266-5611/30/11/114004

  3. Dembczyński, K., Waegeman, W., Hüllermeier, E.: An analysis of chaining in multi-label classification. In: ECAI: European Conference of Artificial Intelligence, vol. 242, pp. 294–299. IOS Press (2012)

    Google Scholar 

  4. Feng, Y., Fan, J., Suykens, J.A.: A statistical learning approach to modal regression. J. Mach. Learn. Res. 21(2), 1–35 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Fenga, Y., Huang, X., Shi, L., Yang, Y., Suykens, J.: Learning with the maximum correntropy criterion induced losses for regression. J. Mach. Learn. Res. 16, 993–1034 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Hendry, A.P., Huber, S.K., León, L.F.D., Herrel, A., Podos, J.: Disruptive selection in a bimodal population of Darwin’s finches. Proc. Roy. Soc. B: Biol. Sci. 276(1657), 753–759 (2008). https://doi.org/10.1098/rspb.2008.1321

    Article  Google Scholar 

  7. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995). https://doi.org/10.1109/ICDAR.1995.598994

  8. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

    Article  MathSciNet  MATH  Google Scholar 

  9. Melki, G., Cano, A., Kecman, V., Ventura, S.: Multi-target support vector regression via correlation regressor chains. Inf. Sci. 415–416, 53–69 (2017). https://doi.org/10.1016/j.ins.2017.06.017

    Article  MathSciNet  MATH  Google Scholar 

  10. de Mendiburu, F., de Mendiburu, M.: Package ‘agricolae’ (2019). https://cran.r-project.org/package=agricolae

  11. Moyano, J.M., Gibaja, E.L., Ventura, S.: An evolutionary algorithm for optimizing the target ordering in ensemble of regressor chains. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2015–2021. IEEE (2017)

    Google Scholar 

  12. Paliwal, S., Iglesias, P.A., Campbell, K., Hilioti, Z., Groisman, A., Levchenko, A.: MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446(7131), 46–51 (2007). https://doi.org/10.1038/nature05561

    Article  Google Scholar 

  13. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Read, J., Martino, L.: Probabilistic regressor chains with Monte Carlo methods. Neurocomputing 413, 471–486 (2020). https://doi.org/10.1016/j.neucom.2020.05.024

    Article  Google Scholar 

  15. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains: a review and perspectives. J. Artif. Intell. Res. (JAIR) 70, 683–718 (2021)

    Article  MathSciNet  Google Scholar 

  16. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55–98 (2016). https://doi.org/10.1007/s10994-016-5546-z

    Article  MathSciNet  MATH  Google Scholar 

  17. Vasconcelos, J.C.S., Cordeiro, G.M., Ortega, E.M.M.: Édila Maria de Rezende: a new regression model for bimodal data and applications in agriculture. J. Appl. Stat. 48(2), 349–372 (2021). https://doi.org/10.1080/02664763.2020.1723503

    Article  MathSciNet  Google Scholar 

  18. Waegeman, W., Dembczyński, K., Hüllermeier, E.: Multi-target prediction: a unifying view on problems and methods. Data Min. Knowl. Disc. 33(2), 293–324 (2018). https://doi.org/10.1007/s10618-018-0595-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, D., Shi, Y., Tsang, I.W., Ong, Y.S., Gong, C., Shen, X.: Survey on multi-output learning. EEE Trans. Neural Netw. Learn. Syst. 31(7), 2409–2429 (2019)

    MathSciNet  Google Scholar 

  20. Yao, W., Li, L.: A new regression model: modal linear regression. Scand. J. Stat. 41(3), 656–671 (2014). https://doi.org/10.1111/sjos.12054

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Antonenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antonenko, E., Read, J. (2022). Multi-modal Ensembles of Regressor Chains for Multi-output Prediction. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds) Advances in Intelligent Data Analysis XX. IDA 2022. Lecture Notes in Computer Science, vol 13205. Springer, Cham. https://doi.org/10.1007/978-3-031-01333-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-01333-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-01332-4

  • Online ISBN: 978-3-031-01333-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics