Skip to main content

dunXai: DO-U-Net for Explainable (Multi-label) Image Classification

Applications to Biomedical Images

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XX (IDA 2022)

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are becoming some of the most dominant tools in scientific research. Despite this, little is often understood about the complex decisions taken by the models in predicting their results. This disproportionately affects biomedical and healthcare research where explainability of AI is one of the requirements for its wide adoption. To help answer the question of what the network is looking at when the labels do not correspond to the presence of objects in the image but the context in which they are found, we propose a novel framework for Explainable AI that combines and simultaneously analyses Class Activation and Segmentation Maps for thousands of images. We apply our approach to two distinct, complex examples of real-world biomedical research, and demonstrate how it can be used to provide a global and concise numerical measurement of how distinct classes of objects affect the final classification. We also show how this can be used to inform model selection, architecture design and aid traditional domain researchers in interpreting the model results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Provided by the Department of Information Technology at Universitá degli Studi di Milano, https://homes.di.unimi.it/scotti/all/.

References

  1. McKinney, S.M., Sieniek, M., Godbole, V., et al.: International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020). https://doi.org/10.1038/s41586-019-1799-6

    Article  Google Scholar 

  2. Artificial intelligence-created medicine to be used on humans for the first time. Exscientia. https://www.exscientia.ai/news-insights/artificial-intelligence-created-medicine-to-be-used. Accessed 21 Jan 2021

  3. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, pp. 2921–2929 (2016). https://doi.org/10.1109/CVPR.2016.319

  4. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.2939778

  5. Ghassemi, M., Oakden-Rayner, L., Andrew, B.L.: The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit. Health 3, 745–750 (2021). https://doi.org/10.1016/S2589-7500(21)00208-9

    Article  Google Scholar 

  6. Jia, S., Lansdall-Welfare, T., Cristianini, N.: Right for the right reason: training agnostic networks. In: Duivesteijn, W., Siebes, A., Ukkonen, A. (eds.) IDA 2018. LNCS, vol. 11191, pp. 164–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01768-2_14

    Chapter  Google Scholar 

  7. Overton, T., Tucker, A.: DO-U-Net for segmentation and counting. In: Berthold, M.R., Feelders, A., Krempl, G. (eds.) IDA 2020. LNCS, vol. 12080, pp. 391–403. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44584-3_31

    Chapter  Google Scholar 

  8. Overview: acute lymphoblastic leukaemia. NHS. https://www.nhs.uk/conditions/acute-lymphoblastic-leukaemia/. Accessed 01 Nov 2021

  9. Acute Lymphoblastic Leukemia Image Database for Image Processing. Department of Computer Science - Universitá degli Studi di Milano. https://homes.di.unimi.it/scotti/all/#. Accessed 01 Nov 2021

  10. Paul, S.M., et al.: How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9(3), 203–214 (2010). https://doi.org/10.1038/nrd3078

    Article  Google Scholar 

  11. Chan, S.H.C., Shan, H., Dahoun, T., Vogel, H., Yuan, S.: Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 40, 592–604 (2019). https://doi.org/10.1016/j.tips.2019.06.004

    Article  Google Scholar 

  12. Zhu, H.: Big data and artificial intelligence modeling for drug discovery. Ann. Rev. Pharmacol. Toxicol. 60, 573–589 (2020). https://doi.org/10.1146/annurev-pharmtox-010919-023324. First published as a Review in Advance in September 2019

    Article  Google Scholar 

  13. Hofmarcher, M., Rumetshofer, E., Clevert, D.-A., Hochreiter, S., Klambauer, G.: Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks. J. Chem. Inf. Model. 59(3), 1163–1171 (2019). https://doi.org/10.1021/acs.jcim.8b00670

    Article  Google Scholar 

  14. Bray, M.-A., et al.: A dataset of images and morphological profiles of 30000 small-molecule treatments using the Cell Painting assay. GigaScience 6(12), giw014 (2017). https://doi.org/10.1093/gigascience/giw014

    Article  Google Scholar 

  15. The ChEMBL Database. https://www.ebi.ac.uk/chembl/. Accessed 01 Nov 2021

  16. ECACC General Cell Collection: U-2 OS, Public Health England. https://www.phe-culturecollections.org.uk/products/celllines/generalcell/detail.jsp?refId=92022711&collection=ecacc_gc. Accessed 20 Jan 2021

  17. Ghadezadeh, M., Asadi, F., Hosseini, A., Bashash, D., Abolghasemi, H., Roshanpoor, A.: Machine learning in detection and classification of leukemia using smear blood images: a systematic review. Sci. Program. 2021(06), 1–14 (2021). https://doi.org/10.1155/2021/9933481

    Article  Google Scholar 

  18. Sharif, M., et al.: Recognition of different types of leukocytes using YOLOv2 and optimized bag-of-features. IEEE Access 8, 167448–167459 (2020). https://doi.org/10.1109/ACCESS.2020.3021660

    Article  Google Scholar 

  19. Vogado, L.H.S., Veras, R.M.S., Araujo, F.H.D., Silva, R.R.V., Aires, K.R.T.: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng. Appl. Artif. Intell. 72, 415–422 (2018). https://doi.org/10.1016/j.engappai.2018.04.024

    Article  Google Scholar 

  20. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2015). https://doi.org/10.1109/CVPR.2016.90

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Acknowledgements

We wish to show our gratitude to Evotec for supporting this research, and specifically thank Michael Bodkin and Daniel Grindrod for providing useful insights and asking the right questions throughout the research, allowing this project to develop. We also thank Karsten Kottig for providing training masks for DO-U-Net for the Cell Painting Dataset, as well as sharing industry insight throughout the project.

We are also immensely grateful to the Department of Information Technology at Universitá degli Studi di Milano for providing the ALL_IDB1 dataset from the Acute Lymphoblastic Leukemia Image Database for Image Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toyah Overton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Overton, T., Tucker, A., James, T., Hristozov, D. (2022). dunXai: DO-U-Net for Explainable (Multi-label) Image Classification. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds) Advances in Intelligent Data Analysis XX. IDA 2022. Lecture Notes in Computer Science, vol 13205. Springer, Cham. https://doi.org/10.1007/978-3-031-01333-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-01333-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-01332-4

  • Online ISBN: 978-3-031-01333-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics