Abstract
Executing operational processes generates valuable event data in organizations’ information systems. Process discovery describes the learning of process models from such event data. Incremental process discovery algorithms allow learning a process model from event data gradually. In this context, process behavior recorded in event data is incrementally fed into the discovery algorithm that integrates the added behavior to a process model under construction. In this paper, we investigate the open research question of the impact of the ordering of incrementally selected process behavior on the quality, i.e., recall and precision, of the learned process models. We propose a framework for defining ordering strategies for traces, i.e., observed process behavior, for incremental process discovery. Further, we provide concrete instantiations of this framework. We evaluate different trace-ordering strategies on real-life event data. The results show that trace-ordering strategies can significantly improve the quality of the learned process models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that per trace that is incrementally added, various LCAs might be changed. However, without fully executing the incremental process discovery approach for a trace, we only can compute the first LCA that must be changed. Therefore, there is a risk that the first LCA will be rated as good based on the strategy, but that further LCAs will have to be changed, which the strategy would rate as bad.
References
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data Engineering. IEEE Comput. Soc. Press (1995). https://doi.org/10.1109/ICDE.1995.380415
Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019). https://doi.org/10.1109/TKDE.2018.2841877
Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-99414-7
Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314 (2017). https://doi.org/10.1109/TKDE.2016.2614680
Cornuéjols, A.: Getting order independence in incremental learning. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 196–212. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56602-3_137
Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Prodigy : human-in-the-loop process discovery. In: 12th International Conference on Research Challenges in Information Science (RCIS). IEEE (2018). https://doi.org/10.1109/RCIS.2018.8406657
Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Berlin Heidelberg (2018). https://doi.org/10.1007/978-3-662-56509-4
Fahland, D., van der Aalst, W.M.: Model repair - aligning process models to reality. Inf. Syst. 47, 220–243 (2015). https://doi.org/10.1016/j.is.2013.12.007
Felix Mannhardt: Sepsis cases - event log. https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
Ferilli, S., Esposito, F.: A logic framework for incremental learning of process models. Fundam. Inf. 128, 413–443 (2013). https://doi.org/10.3233/FI-2013-951
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17
M. (Massimiliano) de Leoni, Felix Mannhardt: Road traffic fine management process. https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
MacGregor, J.N.: The effects of order on learning classifications by example: heuristics for finding the optimal order. Artif. Intell. 34(3), 361–370 (1988). https://doi.org/10.1016/0004-3702(88)90065-3
Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of hierarchical process models. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds.) RCIS 2020. LNBIP, vol. 385, pp. 417–433. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50316-1_25
Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Cortado—an interactive tool for data-driven process discovery and modeling. In: Buchs, D., Carmona, J. (eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 465–475. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76983-3_23
Schuster, D., van Zelst, S.J., van der Aalst, W.M.: Utilizing domain knowledge in data-driven process discovery: a literature review. Comput. Ind. 137, 103612 (2022). https://doi.org/10.1016/j.compind.2022.103612
van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. WIREs Data Min. Knowl. Disc. 2(2), 182–192 (2012). https://doi.org/10.1002/widm.1045
van Dongen, B.F.: BPI challenge (2020). https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schuster, D., Domnitsch, E., van Zelst, S.J., van der Aalst, W.M.P. (2022). A Generic Trace Ordering Framework for Incremental Process Discovery. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds) Advances in Intelligent Data Analysis XX. IDA 2022. Lecture Notes in Computer Science, vol 13205. Springer, Cham. https://doi.org/10.1007/978-3-031-01333-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-01333-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-01332-4
Online ISBN: 978-3-031-01333-1
eBook Packages: Computer ScienceComputer Science (R0)