Abstract
Current subgroup discovery methods struggle to produce good results for large real-life datasets with high dimensionality. Run times can become high and dependencies between attributes are hard to capture. We propose a method in which auto-encoding is applied for dimensionality reduction before subgroup discovery is performed. In an experimental study, we find that auto-encoding increases both the quality and coverage for our dataset with over 500 attributes. On the dataset with over 250 attributes and the one with the most instances, the coverage improves, while the quality remains similar. For smaller datasets, quality and coverage remain similar or see a minor decrease. Additionally, we greatly improve the run time for each dataset-algorithm combination; for the datasets with over 250 and 500 attributes run times decrease by a factor of on average 150 and 200, respectively. We conclude that dimensionality reduction is a promising method for subgroup discovery in datasets with many attributes and/or a high number of instances.
J. F. van der Haar, S. C. Nagelkerken, I. G. Smit, K. van Straaten and J. A. Tack—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
cf. Github repository at https://github.com/JFvdH/Efficient-SD-through-AE.
- 2.
Notice that, for making these distinctive comparisons, we must compare presence or absence of individuals in subgroups in the original data space, with presence or absence of encoded items in subgroups in the encoded space. Naively, this may seem nontrivial, but notice that the number of individuals and the number of items is identical: when encoding, the representation of each individual is changed and its number of attributes may change, but each individual has one unique counterpart item in the encoded space. This enables identification of added and lost items across the divide between original data space and encoded space.
References
Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/
Atzmueller, M.: Subgroup discovery. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 5(1), 35–49 (2015)
Carmona, C.J., González, P., del Jesus, M.J., Herrera, F.: NMEEF-SD: non-dominated multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discovery. IEEE Trans. Fuzzy Syst. 18(5), 958–970 (2010)
Chipman, H.A., Gu, H.: Interpretable dimension reduction. J. Appl. Stat. 32(9), 969–987 (2005)
Duivesteijn, W., van Dijk, T.C.: Exceptional gestalt mining: combining magic cards to make complex coalitions thrive. In: Proceedings of MLSA (2021)
Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. Data Min. Knowl. Disc. 30(1), 47–98 (2015). https://doi.org/10.1007/s10618-015-0403-4
Duivesteijn, W., Loza Mencía, E., Fürnkranz, J., Knobbe, A.: Multi-label LeGo—enhancing multi-label classifiers with local patterns. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 114–125. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34156-4_12
Gamberger, D., Lavrač, N.: Expert-guided subgroup discovery: methodology and application. J. Artif. Intell. Res. 17, 501–527 (2002)
Grosskreutz, H., Rüping, S.: On subgroup discovery in numerical domains. Data Min. Knowl. Disc. 19(2), 210–226 (2009)
Herrera, F., Carmona, C.J., González, P., del Jesus, M.J.: An overview on subgroup discovery: foundations and applications. Knowl. Inf. Syst. 29(3), 495–525 (2011)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hosseini, B., Hammer, B.: Interpretable discriminative dimensionality reduction and feature selection on the manifold. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11906, pp. 310–326. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8_19
Kavšek, B., Lavrač, N.: APRIORI-SD: adapting association rule learning to subgroup discovery. Appl. Artif. Intell. 20(7), 543–583 (2006)
Klösgen, W.: EXPLORA: a multipattern and multistrategy discovery assistant. In: Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)
Knobbe, A., Crémilleux, B., Fürnkranz, J., Scholz, M.: From local patterns to global models: the LeGo approach to data mining. In: Proceedings of LeGo workshop @ ECMLPKDD, pp. 1–16 (2008)
Konijn, R.M., Duivesteijn, W., Kowalczyk, W., Knobbe, A.: Discovering local subgroups, with an application to fraud detection. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7818, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37453-1_1
Lavrač, N., Flach, P., Zupan, B.: Rule evaluation measures: a unifying view. In: Džeroski, S., Flach, P. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 174–185. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48751-4_17
Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5(2), 153–188 (2004)
van Leeuwen, M., Knobbe, A.: Diverse subgroup set discovery. Data Min. Knowl. Discov. 25, 208–242 (2012)
Lemmerich, F., Becker, M.: pysubgroup: easy-to-use subgroup discovery in Python. In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 658–662. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_46
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)
Meeng, M., Knobbe, A.: For real: a thorough look at numeric attributes in subgroup discovery. Data Min. Knowl. Disc. 35(1), 158–212 (2020). https://doi.org/10.1007/s10618-020-00703-x
Proença, H.M., Klijn, R., Bäck, T., van Leeuwen, M.: Identifying flight delay patterns using diverse subgroup discovery. In: Proceedings of SSCI, pp. 60–67 (2018)
Riffenburgh, R.H.: Linear discriminant analysis. Ph.D. thesis, Virginia Polytechnic Institute (1957)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953)
Wang, Y., Yao, H., Zhao, S.: Auto-encoder based dimensionality reduction. Neurocomputing 184, 232–242 (2016)
Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)
Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9_108
Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)
Zimmermann, A., De Raedt, L.: Cluster-grouping: from subgroup discovery to clustering. Mach. Learn. 77(1), 125–159 (2009)
Acknowledgments
This work is part of the research program Data2People with project EDIC and partly financed by the Dutch Research Council (NWO).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
van der Haar, J.F. et al. (2022). Efficient Subgroup Discovery Through Auto-Encoding. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds) Advances in Intelligent Data Analysis XX. IDA 2022. Lecture Notes in Computer Science, vol 13205. Springer, Cham. https://doi.org/10.1007/978-3-031-01333-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-01333-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-01332-4
Online ISBN: 978-3-031-01333-1
eBook Packages: Computer ScienceComputer Science (R0)