Skip to main content

A Learning Vector Quantization Architecture for Transfer Learning Based Classification in Case of Multiple Sources by Means of Null-Space Evaluation

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XX (IDA 2022)

Abstract

We present a method, which allows to train a Generalized Matrix Learning Vector Quantization (GMLVQ) model for classification using data from several, maybe non-calibrated, sources without explicit transfer learning. This is achieved by using a siamese-like GMLVQ-architecture, which comprises different sets of prototypes for the target classification and for the separation learning of the sources. In this architecture, a linear map is trained by means of GMLVQ for source distinction in the mapping space in parallel to the classification task learning. The respective null-space projection provides a common data representation of the different source data for an all-together classification learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Usually, sub-orthogonal matrices are defined in terms of column zero vectors or equivalently \(\boldsymbol{\varOmega }\in \mathbb {R}^{n\times m}\). Then, the more common relation \(\boldsymbol{\varOmega }^{T}\boldsymbol{\varOmega }=\mathbf {I}_{m}\) is equivalently valid.

  2. 2.

    For the measurements a MCC-IMS-device from STEP Sensortechnik und Elektronik, Pockau, Germany (STEP IMS NOO) was used.

References

  1. Biehl, M., Hammer, B., Villmann, T.: Prototype-based models in machine learning. Wiley Interdisc. Rev.: Cogn. Sci. 7(2), 92–111 (2016)

    Article  Google Scholar 

  2. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 343–351 (2016)

    Google Scholar 

  3. Bunte, K., Schneider, P., Hammer, B., Schleif, F.-M., Villmann, T., Biehl, M.: Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Netw. 26(1), 159–173 (2012)

    Article  Google Scholar 

  4. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the LVQ algorithm. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Proceedings of NIPS 2002. Advances in Neural Information Processing, vol. 15, pp. 462–469. MIT Press, Cambridge (2003)

    Google Scholar 

  5. Crammer, K., Kearns, M., Wortman, J.: Learning from multiple sources. J. Mach. Learn. Res. 9(57), 1757–1774 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Ding, Z., Shao, M., Fu, Y.: Transfer learning for image classification with incomplete multiple sources. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), pp. 2188–2195. IEEE Press (2016)

    Google Scholar 

  7. Gama, J., Žliobaitė, I., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 1–37 (2014)

    Article  Google Scholar 

  8. Golub, G., Loan, C.V.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 4th edn. John Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  9. Hastie, T., Simard, P., Säckinger, E.: Learning prototype models for tangent distance. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 999–1006. MIT Press (1995)

    Google Scholar 

  10. Heusinger, M., Raab, C., Schleif, F.-M.: Passive concept drift handling via variations of learning vector quantization. Neural Comput. Appl. 253 (2020)

    Google Scholar 

  11. Horn, R., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  12. Kohonen, T.: Learning vector quantization. Neural Netw. 1(Supplement 1), 303 (1988)

    Google Scholar 

  13. Li, J., Wu, W., Xue, D., Gao, P.: Multi-source deep transfer neural network algorithm. Sensors 19(18), 3992–4008 (2019)

    Article  Google Scholar 

  14. Lisboa, P., Saralajew, S., Vellido, A., Villmann, T.: The coming of age of interpretable and explainable machine learning models. In: Verleysen, M. (ed.) Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2021), Bruges (Belgium), pp. 547–556, Louvain-La-Neuve, Belgium (2021). i6doc.com

  15. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019)

    Article  Google Scholar 

  16. Mathiasen, A., et al.: What if neural networks had SVDs? In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 18411–18420. Curran Associates Inc. (2020)

    Google Scholar 

  17. Paassen, B., Schulz, A., Hammer, B.: Linear supervised transfer learning for generalized matrix LVQ. Mach. Learn. Rep. 10(MLR-04-2016), 11–19 (2016)

    Google Scholar 

  18. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  19. Prahm, C., Paassen, B., Schulz, A., Hammer, B., Aszmann, O.: Transfer learning for rapid re-calibration of a myoelectric prosthesis after electrode shift. In: Ibáñez, J., González-Vargas, J., Azorín, J.M., Akay, M., Pons, J.L. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation II. BB, vol. 15, pp. 153–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46669-9_28

    Chapter  Google Scholar 

  20. Purkhart, R., Hillmann, A., Graupner, R., Becher, G.: Detection of characteristic clusters in IMS-spectrograms of exhaled air polluted with environmental contaminants. Int. J. Ion Mob. Spectromet. 15(15), 63–68 (2012)

    Article  Google Scholar 

  21. Raab, C., Schleif, F.-M.: Transfer learning extensions for the probabilistic classification vector machine. Neurocomputing 397, 320–330 (2020)

    Article  Google Scholar 

  22. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  23. Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., Zhong, C.: Interpretable machine learning: fundamental principles and 10 grand challenges (2021)

    Google Scholar 

  24. Saralajew, S., Holdijk, L., Villmann, T.: Fast adversarial robustness certification of nearest prototype classifiers for arbitrary seminorms. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), vol. 33, pp. 13635–13650. Curran Associates Inc. (2020)

    Google Scholar 

  25. Saralajew, S., Nebel, D., Villmann, T.: Adaptive Hausdorff distances and tangent distance adaptation for transformation invariant classification learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 362–371. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46675-0_40

    Chapter  Google Scholar 

  26. Saralajew, S., Villmann, T.: Transfer learning in classification based on manifold models and its relation to tangent metric learning. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), Anchorage, pp. 1756–1765. IEEE Computer Society Press (2017)

    Google Scholar 

  27. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pp. 423–9. MIT Press, Cambridge (1996)

    Google Scholar 

  28. Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Villmann, T., Biehl, M.: Regularization in matrix relevance learning. IEEE Trans. Neural Netw. 21(5), 831–840 (2010)

    Article  Google Scholar 

  29. Schneider, P., Hammer, B., Biehl, M.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21, 3532–3561 (2009)

    Article  MathSciNet  Google Scholar 

  30. Simard, P., LeCun, Y., Denker, J.: Efficient pattern recognition using a new transformation distance. In: Hanson, S., Cowan, J., Giles, C. (eds.) Advances in Neural Information Processing Systems, vol. 5, pp. 50–58. Morgan-Kaufmann (1993)

    Google Scholar 

  31. Steppert, C., Steppert, I., Bollinger, T., Sterlacci, W.: Rapid non-invasive detection of influenza-A-infection by multicapillary column coupled ion mobility spectrometry. J. Breath Res. 15(1), 1–5 (2021)

    Article  Google Scholar 

  32. Straat, M., Abadi, F., Göpfert, C., Hammer, B., Biehl, M.: Statistical mechanics of on-line learning under concept drift. Entropy 20(775), 1–21 (2018)

    MathSciNet  Google Scholar 

  33. Raab, C., Schleif, F.-M.: Transfer learning extensions for the probabilistic classification vector machine. Neurocomputing 397, 320–330 (2020)

    Article  Google Scholar 

  34. Sun, S., Shi, H., Wu, Y.: A survey of multi-source domain adaptation. Inf. Fusion 24, 84–92 (2015)

    Article  Google Scholar 

  35. Tsai, J.-C., Chien, J.-T.: Adversarial domain separation and adaptation. In: Procceedings of the IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6 (2017)

    Google Scholar 

  36. Villmann, T., Saralajew, S., Villmann, A., Kaden, M.: Learning vector quantization methods for interpretable classification learning and multilayer networks. In: Sabourin, C., Merelo, J., Barranco, A., Madani, K., Warwick, K. (eds.) Proceedings of the 10th International Joint Conference on Computational Intelligence (IJCCI), Sevilla, pp. 15–21. SCITEPRESS - Science and Technology Publications, Lda, Lisbon (2018). ISBN 978-989-758-327-8

    Google Scholar 

  37. Yan, K., Zhang, D.: Correcting instrumental variation and time-varying drift: a transfer learning approach with autoencoders. IEEE Trans. Instrum. Meas. 65(9), 2012–2022 (2016)

    Article  Google Scholar 

  38. Yang, Q., Zhang, Y., Dai, W., Pan, J.: Transfer Learning. Cambridge University Press, Cambridge (2020)

    Book  Google Scholar 

  39. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

We thank the colleagues from Digitronic Chemnitz GmbH (Germany) for measuring the data. Further, D.S., M.K., and J.R. acknowledge funding by the European Social Fund (ESF) within a junior researcher group Maschinelles Lernen und Künstliche Intelligenz in Theorie und Anwnedung (MaLeKITA) and a PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Villmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villmann, T., Staps, D., Ravichandran, J., Saralajew, S., Biehl, M., Kaden, M. (2022). A Learning Vector Quantization Architecture for Transfer Learning Based Classification in Case of Multiple Sources by Means of Null-Space Evaluation. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds) Advances in Intelligent Data Analysis XX. IDA 2022. Lecture Notes in Computer Science, vol 13205. Springer, Cham. https://doi.org/10.1007/978-3-031-01333-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-01333-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-01332-4

  • Online ISBN: 978-3-031-01333-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics