Abstract
In parameter learning, a partial interpretation most often contains information about only a subset of the parameters in the program. However, standard EM-based algorithms use all interpretations to learn all parameters, which significantly slows down learning. To tackle this issue, we introduce EMPLiFI, an EM-based parameter learning technique for probabilistic logic programs, that improves the efficiency of EM by exploiting the rule-based structure of logic programs. In addition, EMPLiFI enables parameter learning of multi-head annotated disjunctions in ProbLog programs, which was not yet possible in previous methods. Theoretically, we show that EMPLiFI is correct. Empirically, we compare EMPLiFI to LFI-ProbLog and EMBLEM. The results show that EMPLiFI is the most efficient in learning single-head annotated disjunctions. In learning multi-head annotated disjunctions, EMPLiFI is more accurate than EMBLEM, while LFI-ProbLog cannot handle this task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellodi, E., Riguzzi, F.: Expectation maximization over binary decision diagrams for probabilistic logic programs. Intell. Data Anal. 17(2), 343–363 (2013). https://doi.org/10.3233/IDA-130582
De Raedt, L., et al.: Towards digesting the alphabet-soup of statistical relational learning. In: Roy, D., Winn, J., McAllester, D., Mansinghka, V., Tenenbaum, J. (eds.) Proceedings of the 1st Workshop on Probabilistic Programming: Universal Languages, Systems and Applications, Whistler, Canada, December 2008
De Raedt, L.: Logical and relational learning. In: Zaverucha, G., da Costa, A.L. (eds.) Advances in Artificial Intelligence - SBIA 2008, p. 1. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68856-3
De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_1
De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1), 5–47 (2015). https://doi.org/10.1007/s10994-015-5494-z
Faria, F.H.O.V.D., Gusmão, A., Cozman, F.G., Mauá, D.: Speeding-up problog’s parameter learning. arXiv:1707.08151 (2017)
Fierens, D., et al.: Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory Pract. Logic Program. 15(3), 358–401 (2015). https://doi.org/10.1017/S1471068414000076
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning). MIT Press, Cambridge (2007)
Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic logic programs from interpretations. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 581–596. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23780-5_47
Kameya, Y., Sato, T.: Parameter learning of logic programs for symbolic-statistical modeling. arXiv:1106.1797 (2011)
Kersting, K., Raedt, L.D.: Bayesian Logic Programming: Theory and Tool. MIT Press, Cambridge (2007)
Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall Inc., Hoboken (2003)
Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1), 7–56 (1997). https://doi.org/10.1016/S0004-3702(97)00027-1, Economic Principles of Multi-Agent Systems
Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006). https://doi.org/10.1007/s10994-006-5833-1
Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming, ICLP 1995, pp. 715–729. MIT Press (1995)
Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: a language of causal probabilistic events and its relation to logic programming. Theory Pract. Logic Program. 9(3), 245–308 (2009). https://doi.org/10.1017/S1471068409003767
Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30
Vieira de Faria, F.H.O., Gusmão, A.C., De Bona, G., Mauá, D.D., Cozman, F.G.: Speeding up parameter and rule learning for acyclic probabilistic logic programs. Int. J. Approx. Reason. 106, 32–50 (2019). https://doi.org/10.1016/j.ijar.2018.12.012. ISSN 0888613X. Elsevier Inc.
Acknowledgments
This work was supported by the FNRS-FWO joint programme under EOS No. 30992574. It has also received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme, the EU H2020 ICT48 project “TAILOR” under contract #952215, the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, and the KU Leuven Research fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, WC., Jain, A., De Raedt, L., Meert, W. (2022). Parameter Learning in ProbLog with Annotated Disjunctions. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds) Advances in Intelligent Data Analysis XX. IDA 2022. Lecture Notes in Computer Science, vol 13205. Springer, Cham. https://doi.org/10.1007/978-3-031-01333-1_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-01333-1_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-01332-4
Online ISBN: 978-3-031-01333-1
eBook Packages: Computer ScienceComputer Science (R0)