Skip to main content

Parameter Learning in ProbLog with Annotated Disjunctions

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XX (IDA 2022)

Abstract

In parameter learning, a partial interpretation most often contains information about only a subset of the parameters in the program. However, standard EM-based algorithms use all interpretations to learn all parameters, which significantly slows down learning. To tackle this issue, we introduce EMPLiFI, an EM-based parameter learning technique for probabilistic logic programs, that improves the efficiency of EM by exploiting the rule-based structure of logic programs. In addition, EMPLiFI enables parameter learning of multi-head annotated disjunctions in ProbLog programs, which was not yet possible in previous methods. Theoretically, we show that EMPLiFI is correct. Empirically, we compare EMPLiFI to LFI-ProbLog and EMBLEM. The results show that EMPLiFI is the most efficient in learning single-head annotated disjunctions. In learning multi-head annotated disjunctions, EMPLiFI is more accurate than EMBLEM, while LFI-ProbLog cannot handle this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.machineryspaces.com/emergency-power-supply.html.

  2. 2.

    https://github.com/ML-KULeuven/problog.

References

  1. Bellodi, E., Riguzzi, F.: Expectation maximization over binary decision diagrams for probabilistic logic programs. Intell. Data Anal. 17(2), 343–363 (2013). https://doi.org/10.3233/IDA-130582

    Article  Google Scholar 

  2. De Raedt, L., et al.: Towards digesting the alphabet-soup of statistical relational learning. In: Roy, D., Winn, J., McAllester, D., Mansinghka, V., Tenenbaum, J. (eds.) Proceedings of the 1st Workshop on Probabilistic Programming: Universal Languages, Systems and Applications, Whistler, Canada, December 2008

    Google Scholar 

  3. De Raedt, L.: Logical and relational learning. In: Zaverucha, G., da Costa, A.L. (eds.) Advances in Artificial Intelligence - SBIA 2008, p. 1. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68856-3

  4. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_1

    Chapter  MATH  Google Scholar 

  5. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1), 5–47 (2015). https://doi.org/10.1007/s10994-015-5494-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Faria, F.H.O.V.D., Gusmão, A., Cozman, F.G., Mauá, D.: Speeding-up problog’s parameter learning. arXiv:1707.08151 (2017)

  7. Fierens, D., et al.: Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory Pract. Logic Program. 15(3), 358–401 (2015). https://doi.org/10.1017/S1471068414000076

    Article  MathSciNet  MATH  Google Scholar 

  8. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning). MIT Press, Cambridge (2007)

    Book  Google Scholar 

  9. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic logic programs from interpretations. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 581–596. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23780-5_47

    Chapter  Google Scholar 

  10. Kameya, Y., Sato, T.: Parameter learning of logic programs for symbolic-statistical modeling. arXiv:1106.1797 (2011)

  11. Kersting, K., Raedt, L.D.: Bayesian Logic Programming: Theory and Tool. MIT Press, Cambridge (2007)

    Google Scholar 

  12. Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall Inc., Hoboken (2003)

    Google Scholar 

  13. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1), 7–56 (1997). https://doi.org/10.1016/S0004-3702(97)00027-1, Economic Principles of Multi-Agent Systems

  14. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006). https://doi.org/10.1007/s10994-006-5833-1

    Article  MATH  Google Scholar 

  15. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming, ICLP 1995, pp. 715–729. MIT Press (1995)

    Google Scholar 

  16. Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: a language of causal probabilistic events and its relation to logic programming. Theory Pract. Logic Program. 9(3), 245–308 (2009). https://doi.org/10.1017/S1471068409003767

    Article  MathSciNet  MATH  Google Scholar 

  17. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30

    Chapter  MATH  Google Scholar 

  18. Vieira de Faria, F.H.O., Gusmão, A.C., De Bona, G., Mauá, D.D., Cozman, F.G.: Speeding up parameter and rule learning for acyclic probabilistic logic programs. Int. J. Approx. Reason. 106, 32–50 (2019). https://doi.org/10.1016/j.ijar.2018.12.012. ISSN 0888613X. Elsevier Inc.

Download references

Acknowledgments

This work was supported by the FNRS-FWO joint programme under EOS No. 30992574. It has also received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme, the EU H2020 ICT48 project “TAILOR” under contract #952215, the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, and the KU Leuven Research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Chi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, WC., Jain, A., De Raedt, L., Meert, W. (2022). Parameter Learning in ProbLog with Annotated Disjunctions. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds) Advances in Intelligent Data Analysis XX. IDA 2022. Lecture Notes in Computer Science, vol 13205. Springer, Cham. https://doi.org/10.1007/978-3-031-01333-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-01333-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-01332-4

  • Online ISBN: 978-3-031-01333-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics