Skip to main content

Semantic Segmentation and Depth Estimation with RGB and DVS Sensor Fusion for Multi-view Driving Perception

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13188))

Included in the following conference series:

Abstract

In this research, we present a novel deep multi-task learning model to handle the perception stage of an autonomous driving system. The model leverages the fusion of RGB and dynamic vision sensor (DVS) images to perform semantic segmentation and depth estimation in four different perspectives of view simultaneously. As for the experiment, CARLA simulator is used to generate thousands of simulation data for training, validation, and testing processes. A dynamically changing environment with various weather conditions, daytime, maps, and non-player characters (NPC) is also considered to simulate a more realistic condition with expecting a better generalization of the model. An ablation study is conducted by modifying the network architecture to evaluate the influence of the sensor fusion technique. Based on the test result on 2 different datasets, the model that leverages feature maps sharing from RGB and DVS encoders is performing better. Furthermore, we show that our model can inference faster and have a comparable performance against another recent model. Official implementation code is shared at https://github.com/oskarnatan/RGBDVS-fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borse, S., Wang, Y., Zhang, Y., Porikli, F.: InverseForm: a loss function for structured boundary-aware segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5911 (2021)

    Google Scholar 

  2. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11618–11628 (2020)

    Google Scholar 

  3. Cantrell, K., Miller, C., Morato, C.: Practical depth estimation with image segmentation and serial U-Nets. In: Proceedings of the International Conference on Vehicle Technology and Intelligent Transport Systems, pp. 406–414 (2020)

    Google Scholar 

  4. Cipolla, R., Gal, Y., Kendall, A.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the Annual Conference on Robot Learning, pp. 1–16 (2017)

    Google Scholar 

  7. Fayyad, J., Jaradat, M.A., Gruyer, D., Najjaran, H.: Deep learning sensor fusion for autonomous vehicle perception and localization: a review. Sensors 20(15) (2020)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  9. Häne, C., et al.: 3D visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection. Image Vision Comput. 68, 14–27 (2017)

    Article  Google Scholar 

  10. Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K., Hamada, T.: An open approach to autonomous vehicles. IEEE Micro 35(6), 60–68 (2015)

    Article  Google Scholar 

  11. Khatab, E., Onsy, A., Varley, M., Abouelfarag, A.: Vulnerable objects detection for autonomous driving: a review. Integration 78, 36–48 (2021)

    Article  Google Scholar 

  12. Kocic, J., Jovicic, N., Drndarevic, V.: An end-to-end deep neural network for autonomous driving designed for embedded automotive platforms. Sensors 19(9) (2019)

    Google Scholar 

  13. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Proceedings of the International Conference on Neural Information Processing Systems, pp. 950–957 (1991)

    Google Scholar 

  14. Levinson, J., et al.: Towards fully autonomous driving: systems and algorithms. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 163–168 (2011)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 936–944 (2017)

    Google Scholar 

  16. Munir, F., Azam, S., Jeon, M., Lee, B.G., Pedrycz, W.: LDNet: end-to-end lane marking detection approach using a dynamic vision sensor. IEEE Trans. Intell. Transp. Syst. 1–17 (2021)

    Google Scholar 

  17. Nathan, S., Derek, H., Pushmeet, K., Rob, F.: Indoor segmentation and support inference from RGBD images. In: Proceedings of the European Conference on Computer Vision, pp. 746–760 (2012)

    Google Scholar 

  18. Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M.: A deep learning-based radar and camera sensor fusion architecture for object detection. In: Proceedings of the Sensor Data Fusion: trends, Solutions, Applications, pp. 1–7 (2019)

    Google Scholar 

  19. Paszke, A., et al.: PyTorch: an imperative style, high performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)

    Google Scholar 

  20. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. ArXiv (2021). https://arxiv.org/abs/2103.13413

  21. Ravoor, P.C., Sudarshan, T.S.B.: Deep learning methods for multi-species animal re-identification and tracking - a survey. Comput. Sci. Rev. 38, 100289 (2020)

    Article  MathSciNet  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  23. Shekhar, H., Seal, S., Kedia, S., Guha, A.: Survey on applications of machine learning in the field of computer vision. In: Emerging Technology in Modelling and Graphics, pp. 667–678 (2020)

    Google Scholar 

  24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res 15(56), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Proceedings of the International Conference on Machine Learning. pp. 1139–1147 (2013)

    Google Scholar 

  26. Tao, A., Sapra, K., Catanzaro, B.: Hierarchical multi-scale attention for semantic segmentation. ArXiv (2020). https://arxiv.org/abs/2005.10821

  27. Teichmann, M., Weber, M., Zollner, M., Cipolla, R., Urtasun, R.: MultiNet: real-time joint semantic reasoning for autonomous driving. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 1013–1020 (2018)

    Google Scholar 

  28. Ye, J.C., Sung, W.K.: Understanding geometry of encoder-decoder CNNs. In: Proceedings of the International Conference on Machine Learning, pp. 7064–7073 (2019)

    Google Scholar 

  29. Yousefzadeh, A., Orchard, G., Gotarredona, T.S., Barranco, B.L.: Active perception with dynamic vision sensors. Minimum saccades with optimum recognition. IEEE Trans. Biomed. Circuits Syst. 12(4), 927–939 (2018)

    Article  Google Scholar 

  30. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. (early access) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Natan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Natan, O., Miura, J. (2022). Semantic Segmentation and Depth Estimation with RGB and DVS Sensor Fusion for Multi-view Driving Perception. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13188. Springer, Cham. https://doi.org/10.1007/978-3-031-02375-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02375-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02374-3

  • Online ISBN: 978-3-031-02375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics