Skip to main content

Joint Multi-feature Learning for Facial Age Estimation

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13188))

Included in the following conference series:

Abstract

Age estimation from face images has attracted much attention due to its favorable of many real-world applications such as video surveillance and social networking. However, most existing studies usually directly extract aging-feature, which ignore the high age-related factors such as race and gender information. In this paper, we propose a joint multi-feature learning method for robust facial age estimation by extensively exploring age-related features. Specifically, we first specially learn the race and gender features from face images, which are two highly related information for age estimation of an individual. Then, we jointly learn the aging-feature by concatenating these race-specific and gender-specific information maps with the original face images. To fully utilize the continuity and the order of age labels, we form a regression-ranking age estimator to predict the final age. Experimental results on three benchmark databases demonstrate the superior performance of our proposed method on facial age estimation in comparison with other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 126(2), 144–157 (2016). https://doi.org/10.1007/s11263-016-0940-3

    Article  MathSciNet  Google Scholar 

  2. Niu, Z., Zhou, M,. Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple output CNN for age estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4920–4928 (2016)

    Google Scholar 

  3. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4920–4928 (2016)

    Google Scholar 

  5. Guo, G., Mu, G., Fu, Y.: Human age estimation using bio-inspired features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 112–119 (2009)

    Google Scholar 

  6. Antipov, G., Baccouche, M.: Effective training of convolutional neural networks for face-based gender and age prediction. Pattern Recognit. 72(1), 15–26 (2017)

    Article  Google Scholar 

  7. Pei, W., Dibeklioǧlu, H., Baltrušaitis, T., Tax, D.M.: Attended end-to-end architecture for age estimation from facial expression videos. IEEE Trans. Image Process. 29, 1972–1984 (2019)

    Article  MathSciNet  Google Scholar 

  8. Tan, Z., Yang, Y., Wan, J., Guo, G.: Deeply-learned hybrid representations for facial age estimation. In: International Joint Conferences on Artificial Intelligence, pp. 3548–3554 (2009)

    Google Scholar 

  9. Liu, H., Lu, J., Feng, J., Zhou, J.: Group-aware deep feature learning for facial age estimation. Pattern Recognit. 66, 82–94 (2017)

    Article  Google Scholar 

  10. Chen, P.H., Lin, C.J., Schölkopf, B.: A tutorial on v-support vector machines. Appl. Stoch. Models Bus. Ind. 21(2), 111–136 (2005)

    Article  MathSciNet  Google Scholar 

  11. Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B.: Deep differentiable random forests for age estimation. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 404–419 (2021)

    Article  Google Scholar 

  12. Gunay, A., Nabiyev, V.V.: Automatic age classification with LBP. In: International Symposium on Computer and Information Sciences, vol. 1, pp. 1–4 (2008)

    Google Scholar 

  13. Zhang, C., Liu, S., Xu, X., Zhu, C.: C3AE: exploring the limits of compact model for age estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 12587–12596 (2019)

    Google Scholar 

  14. Agustsson, E., Timofte, R., Van Gool, L.: Anchored regression networks applied to age estimation and super resolution. In: IEEE International Conference on Computer Vision, pp. 1643–1652 (2017)

    Google Scholar 

  15. Geng, X., Yin, C., Zhou, Z.H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2401–2412 (2013)

    Article  Google Scholar 

  16. Xie, J.C., Pun, C.M.: Deep and ordinal ensemble learning for human age estimation from facial images. IEEE Trans. Inf. Forensics Secur. 15, 2361–2374 (2020)

    Article  Google Scholar 

  17. Chen, S., Zhang, C., Dong, M., Le, J., Rao, M.: Using ranking-CNN for age estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5183–5192 (2017)

    Google Scholar 

  18. Duan, M., Li, K., Li, K.: An ensemble CNN2ELM for age estimation. IEEE Trans. Inf. Forensics Secur. 13(3), 758–772 (2017)

    Article  Google Scholar 

  19. Fei, L., Zhang, B., Xu, Y., Tian, C., Rida, I., Zhang, D.: Jointly heterogeneous palmprint discriminant feature learning. IEEE Trans. Neural Netw. Learn. Syst. 1–12 (2021). https://doi.org/10.1109/TNNLS.2021.3066381 (2021)

  20. Fei, L., Zhang, B., Zhang, L., Jia, W., Wen, J., Wu, J.: Learning compact multifeature codes for palmprint recognition from a single training image per palm. IEEE Trans. Multimedia 23, 2930–2942 (2021)

    Article  Google Scholar 

  21. Yaman, D., Irem Eyiokur, F., Kemal Ekenel, H.: Multimodal age and gender classification using ear and profile face images. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2414–2421 (2019)

    Google Scholar 

  22. Antipov, G., Baccouche, M., Berrani, S.A., Dugelay, J.L.: Apparent age estimation from face images combining general and children-specialized deep learning models. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 96–104 (2016)

    Google Scholar 

  23. Wang, L., Huang, J., Yin, M., Cai, R., Hao, Z.: Block diagonal representation learning for robust subspace clustering. Inf. Sci. 526, 54–67 (2020)

    Article  MathSciNet  Google Scholar 

  24. Yang, T.Y., Huang, Y.H., Lin, Y.Y., Hsiu, P.C., Chuang, Y.Y.: SSR-Net: a compact soft stagewise regression network for age estimation. In: International Joint Conference on Artificial Intelligence, pp. 1078–1084 (2018)

    Google Scholar 

  25. Zheng, D.P., Du, J.X., Fan, W.T., Wang, J., Zhai, C.M.: Deep learning with PCANet for human age estimation. In: Huang, D.-S., Jo, K.-H. (eds.) ICIC 2016, Part II. LNCS, vol. 9772, pp. 300–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42294-7_26

    Chapter  Google Scholar 

  26. Zaghbani, S., Boujneh, N., Bouhlel, M.S.: Age estimation using deep learning. Comput. Electr. Eng. 68, 337–347 (2018)

    Article  Google Scholar 

  27. Li, K., Xing, J., Su, C., Hu, W., Zhang, Y., Maybank, S.: Deep cost-sensitive and order-preserving feature learning for cross-population age estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 399–408 (2018)

    Google Scholar 

  28. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part VII. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409 (2018)

  30. Cootes, T.F., Edwards, G.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  31. Tan, Z., Wan, J., Lei, Z., Zhi, R., Guo, G., Li, S.Z.: Efficient group-n encoding and decoding for facial age estimation. IEEE Trans. Pattern Anal. Mach. Intell. 40(11), 2610–2623 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 62176066, 62076086 and 62006059, in part by the Guangzhou Science and technology plan project under Grant 202002030110, in part by the Natural Science Foundation of Guangdong Province under Grant 2019A1515011811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lunke Fei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Y. et al. (2022). Joint Multi-feature Learning for Facial Age Estimation. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13188. Springer, Cham. https://doi.org/10.1007/978-3-031-02375-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02375-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02374-3

  • Online ISBN: 978-3-031-02375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics