Abstract
Underwater fish recognition has great value for marine ecological monitoring and management. However, the underwater environment poses great challenges due to absorption and scattering of light which leads to interference images obstructing fish species recognition. In this paper, we use the teacher-student model to distill the interference in underwater fish images, which intends to classify the fish species more efficiently. Specifically, the processed fish image and the raw fish image are used to generate the distance matrix separately, and the interference information is distilled at the feature level by reducing the discrepancy of the two distance matrix, which promotes the network to extract discriminative clues. The KL-Divergence is utilized to further lower the noise in the original data distribution. The results of experiments conducted on several datasets verify that the proposed method is effective and outperforms the competitors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anantharajah, K., et al.: Local inter-session variability modelling for object classification. In: IEEE Winter Conference on Applications of Computer Vision, pp. 309–316. IEEE (2014)
Chuang, M.C., Hwang, J.N., Rose, C.S.: Aggregated segmentation of fish from conveyor belt videos. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1807–1811. IEEE (2013)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. Ieee (2009)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, L., Liao, X., Liu, W., Liu, X., Cheng, P., Mei, T.: Fastreid: a pytorch toolbox for general instance re-identification. arXiv preprint arXiv:2006.02631 (2020)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Jager, J., Simon, M., Denzler, J., Wolff, V., Fricke-Neuderth, K., Kruschel, C.: Croatian Fish Dataset: Fine-grained Classification of Fish Species in Their Natural Habitat. BMCV, Swansea (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015. arXiv preprint arXiv:1412.6980 9 (2015)
Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)
Li, H., Pang, J., Tao, D., Yu, Z.: Cross adversarial consistency self-prediction learning for unsupervised domain adaptation person re-identification. Inf. Sci. 559, 46–60 (2021)
Mo, X., Wei, T., Zhang, H., Huang, Q., Luo, W.: Label-smooth learning for fine-grained visual categorization. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12046, pp. 17–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41404-7_2
Qiu, C., Zhang, S., Wang, C., Yu, Z., Zheng, H., Zheng, B.: Improving transfer learning and squeeze-and-excitation networks for small-scale fine-grained fish image classification. IEEE Access 6, 78503–78512 (2018)
Saitoh, T., Shibata, T., Miyazono, T.: Feature points based fish image recognition. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 8, 12–22 (2016)
Shen, Z., He, Z., Xue, X.: Meal: multi-model ensemble via adversarial learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4886–4893 (2019)
Shen, Z., Savvides, M.: Meal v2: Boosting vanilla resnet-50 to 80%+ top-1 accuracy on imagenet without tricks. arXiv preprint arXiv:2009.08453 (2020)
Sun, N., Mo, X., Wei, T., Zhang, D., Luo, W.: The effectiveness of noise in data augmentation for fine-grained image classification. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12046, pp. 779–792. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41404-7_55
Walawalkar, D., Shen, Z., Savvides, M.: Online ensemble model compression using knowledge distillation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 18–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_2
Wang, L., Yoon, K.J.: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Wang, Q., Huang, W., Xiong, Z., Li, X.: Looking closer at the scene: multiscale representation learning for remote sensing image scene classification. IEEE Trans. Neural Networks Learn. Syst. (2020)
Wen, Z., Ke, Z., Xie, W., Shen, L.: Clustering-based adaptive dropout for CNN-based classification. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12046, pp. 46–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41404-7_4
White, D.J., Svellingen, C., Strachan, N.J.: Automated measurement of species and length of fish by computer vision. Fish. Res. 80(2–3), 203–210 (2006)
Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Learning generalisable omni-scale representations for person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Zhuang, P., Wang, Y., Qiao, Y.: Wildfish: a large benchmark for fish recognition in the wild. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1301–1309 (2018)
Acknowledgements
This work was supported by the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008 and the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) (Grant No. 20200009).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Pang, J., Liu, W., Liu, B., Tao, D., Zhang, K., Lu, X. (2022). Interference Distillation for Underwater Fish Recognition. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13188. Springer, Cham. https://doi.org/10.1007/978-3-031-02375-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-02375-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-02374-3
Online ISBN: 978-3-031-02375-0
eBook Packages: Computer ScienceComputer Science (R0)