Skip to main content

Hierarchical Attentive Upsampling on Input Signals for Remote Heart Rate Estimation

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13189))

Included in the following conference series:

  • 1076 Accesses

Abstract

Heart Rate (HR) is one of the most important indicators reflecting the physiological state of the human body, and more researches have begun to focus on remote HR measurement in order to meet the challenging but practical non-contact requirements. Existing remote HR estimation methods rely on the high-resolution input signals constructed from low-resolution Spatial-Temporal Map (STMap) of facial sequences, but most of them use simple linear projection, which are difficult to capture the complex temporal and spatial relationships in between weak raw signals. To address this problem, we propose a Hierarchical Attentive Upsampling Module (HAUM) to obtain rich and discriminating input signals from STMap for accurate HR estimation. Our approach includes two parts: (1) a Hierarchical Upsampling Strategy (HUS) for progressively enriching the spatial-temporal information, and (2) an Attentive Space Module (ASM) to focus the model on more discriminating HR signal regions with clearer periodicity. The experiments performed on two public datasets VIPL-HR and MAHNOB-HCI show that the proposed approach achieves the state-of-the-art performance.

This work was supported by the National Science Fund of China under Grant Nos. 61876083.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/seetaface/SeetaFaceEngine.

  2. 2.

    The position of ECG sensor is upper left corner of chest and under clavicle bone.

  3. 3.

    https://github.com/mne-tools/mne-python.

  4. 4.

    https://pytorch.org/.

References

  1. Brüser, C., Antink, C.H., Wartzek, T., Walter, M., Leonhardt, S.: Ambient and unobtrusive cardiorespiratory monitoring techniques. IEEE Rev. Biomed. Eng. 8, 30–43 (2015)

    Article  Google Scholar 

  2. Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using convolutional attention networks. In: Proceedings of IEEE ECCV, pp. 349–365 (2018)

    Google Scholar 

  3. De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013)

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  5. Heusch, G., Anjos, A., Marcel, S.: A reproducible study on remote heart rate measurement. arXiv preprint arXiv:1709.00962 (2017)

  6. Hsu, G.S., Ambikapathi, A., Chen, M.S.: Deep learning with time-frequency representation for pulse estimation from facial videos. In: 2017 IEEE International Joint Conference on Biometrics, pp. 383–389. IEEE (2017)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of IEEE CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  9. Jain, P.K., Tiwari, A.K.: Heart monitoring systems-a review. Comput. Biol. Med. 54, 1–13 (2014)

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Kwon, S., Kim, J., Lee, D., Park, K.: ROI analysis for remote photoplethysmography on facial video. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4938–4941. IEEE (2015)

    Google Scholar 

  12. Lam, A., Kuno, Y.: Robust heart rate measurement from video using select random patches. In: ICCV, pp. 3640–3648 (2015)

    Google Scholar 

  13. Lee, E., Chen, E., Lee, C.Y.: Meta-RPPG: remote heart rate estimation using a transductive meta-learner. In: Proceedings of IEEE ECCV (2020)

    Google Scholar 

  14. Lempe, G., Zaunseder, S., Wirthgen, T., Zipser, S., Malberg, H.: ROI selection for remote photoplethysmography. In: Meinzer, H.P., Deserno, T., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2013, pp. 99–103. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36480-8_19

  15. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of IEEE CVPR, pp. 510–519 (2019)

    Google Scholar 

  16. Li, X., Chen, J., Zhao, G., Pietikainen, M.: Remote heart rate measurement from face videos under realistic situations. In: Proceedings of IEEE CVPR, pp. 4264–4271 (2014)

    Google Scholar 

  17. McDuff, D.: Deep super resolution for recovering physiological information from videos. In: CVPR Workshops, pp. 1367–1374 (2018)

    Google Scholar 

  18. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  19. Niu, X., Han, H., Shan, S., Chen, X.: VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 562–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_36

    Chapter  Google Scholar 

  20. Niu, X., Shan, S., Han, H., Chen, X.: RhythmNet: end-to-end heart rate estimation from face via spatial-temporal representation. TIP 29, 2409–2423 (2019)

    Google Scholar 

  21. Niu, X., Yu, Z., Han, H., Li, X., Shan, S., Zhao, G.: Video-based remote physiological measurement via cross-verified feature disentangling. In: Proceedings of IEEE ECCV (2020)

    Google Scholar 

  22. Niu, X., Zhao, X., Han, H., Das, A., Dantcheva, A., Shan, S., Chen, X.: Robust remote heart rate estimation from face utilizing spatial-temporal attention. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 1–8. IEEE (2019)

    Google Scholar 

  23. Poh, M.Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58(1), 7–11 (2010)

    Article  Google Scholar 

  24. Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Exp. 18(10), 10762–10774 (2010)

    Article  Google Scholar 

  25. Qiu, Y., Liu, Y., Arteaga-Falconi, J., Dong, H., El Saddik, A.: EVM-CNN: real-time contactless heart rate estimation from facial video. IEEE Trans. Multimed. 21(7), 1778–1787 (2018)

    Article  Google Scholar 

  26. Sabokrou, M., Pourreza, M., Li, X., Fathy, M., Zhao, G.: Deep-HR: fast heart rate estimation from face video under realistic conditions. arXiv preprint arXiv:2002.04821 (2020)

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2011)

    Article  Google Scholar 

  29. Tsou, Y.Y., Lee, Y.A., Hsu, C.T., Chang, S.H.: Siamese-rPPG network: remote photoplethysmography signal estimation from face videos. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 2066–2073 (2020)

    Google Scholar 

  30. Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16(26), 21434–21445 (2008)

    Article  Google Scholar 

  31. Wang, W., den Brinker, A.C., Stuijk, S., de Haan, G.: Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64(7), 1479–1491 (2016)

    Article  Google Scholar 

  32. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: Proceedings of IEEE ECCV, pp. 3–19 (2018)

    Google Scholar 

  33. Yan, Y., Ma, X., Yao, L., Ouyang, J.: Noncontact measurement of heart rate using facial video illuminated under natural light and signal weighted analysis. Bio-Med. Mater. Eng. 26(s1), S903–S909 (2015)

    Article  Google Scholar 

  34. Yu, Z., Peng, W., Li, X., Hong, X., Zhao, G.: Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement. In: ICCV, pp. 151–160 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, P., Li, X., Qian, J., Jin, Z., Yang, J. (2022). Hierarchical Attentive Upsampling on Input Signals for Remote Heart Rate Estimation. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Springer, Cham. https://doi.org/10.1007/978-3-031-02444-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02444-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02443-6

  • Online ISBN: 978-3-031-02444-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics