Skip to main content

Subject Adaptive EEG-Based Visual Recognition

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13189))

Included in the following conference series:

Abstract

This paper focuses on EEG-based visual recognition, aiming to predict the visual object class observed by a subject based on his/her EEG signals. One of the main challenges is the large variation between signals from different subjects. It limits recognition systems to work only for the subjects involved in model training, which is undesirable for real-world scenarios where new subjects are frequently added. This limitation can be alleviated by collecting a large amount of data for each new user, yet it is costly and sometimes infeasible. To make the task more practical, we introduce a novel problem setting, namely subject adaptive EEG-based visual recognition. In this setting, a bunch of pre-recorded data of existing users (source) is available, while only a little training data from a new user (target) are provided. At inference time, the model is evaluated solely on the signals from the target user. This setting is challenging, especially because training samples from source subjects may not be helpful when evaluating the model on the data from the target subject. To tackle the new problem, we design a simple yet effective baseline that minimizes the discrepancy between feature distributions from different subjects, which allows the model to extract subject-independent features. Consequently, our model can learn the common knowledge shared among subjects, thereby significantly improving the recognition performance for the target subject. In the experiments, we demonstrate the effectiveness of our method under various settings. Our code is available at here (https://github.com/DeepBCI/Deep-BCI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, W.W., et al.: Decoding music attention from “EEG headphones”: a user-friendly auditory brain-computer interface. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 985–989. IEEE (2021)

    Google Scholar 

  2. Anuragi, A., Sisodia, D.S.: Alcohol use disorder detection using EEG signal features and flexible analytical wavelet transform. Biomed. Signal Process. Control 52, 384–393 (2019)

    Article  Google Scholar 

  3. Bos, D.O., Reuderink, B.: Brainbasher: a BCI game. In: Extended Abstracts of the International Conference on Fun and Games, pp. 36–39. Eindhoven University of Technology Eindhoven, The Netherlands (2008)

    Google Scholar 

  4. Chambayil, B., Singla, R., Jha, R.: Virtual keyboard BCI using eye blinks in EEG. In: 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 466–470. IEEE (2010)

    Google Scholar 

  5. Dai, M., Zheng, D., Na, R., Wang, S., Zhang, S.: EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3), 551 (2019)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  7. Eidel, M., Kübler, A.: Wheelchair control in a virtual environment by healthy participants using a p300-BCI based on tactile stimulation: training effects and usability. Front. Hum. Neurosci. 14 (2020)

    Google Scholar 

  8. Eroğlu, K., Kayıkçıoğlu, T., Osman, O.: Effect of brightness of visual stimuli on EEG signals. Behav. Brain Res. 382, 112486 (2020)

    Article  Google Scholar 

  9. Foxe, J.J., Simpson, G.V., Ahlfors, S.P.: Parieto-occipital 10 hz activity reflects anticipatory state of visual attention mechanisms. NeuroReport 9(17), 3929–3933 (1998)

    Article  Google Scholar 

  10. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2551–2559 (2015)

    Google Scholar 

  11. Grizou, J., Iturrate, I., Montesano, L., Oudeyer, P.Y., Lopes, M.: Calibration-free BCI based control. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  12. Huang, H., et al.: An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Trans. Affect. Comput. 12(4), 832–842 (2019)

    Article  Google Scholar 

  13. Hwang, S., Hong, K., Son, G., Byun, H.: EZSL-GAN: EEG-based zero-shot learning approach using a generative adversarial network. In: 2019 7th International Winter Conference on Brain-Computer Interface, BCI, pp. 1–4 (2019). https://doi.org/10.1109/IWW-BCI.2019.8737322

  14. Hwang, S., Hong, K., Son, G., Byun, H.: Learning CNN features from de features for EEG-based emotion recognition. Pattern Anal. Appl. 23(3), 1323–1335 (2020)

    Article  Google Scholar 

  15. Hwang, S., Ki, M., Hong, K., Byun, H.: Subject-independent EEG-based emotion recognition using adversarial learning. In: 2020 8th International Winter Conference on Brain-Computer Interface, BCI, pp. 1–4 (2020). https://doi.org/10.1109/BCI48061.2020.9061624

  16. Hwang, S., Lee, P., Park, S., Byun, H.: Learning subject-independent representation for EEG-based drowsy driving detection. In: 2021 9th International Winter Conference on Brain-Computer Interface, BCI, pp. 1–3 (2021). https://doi.org/10.1109/BCI51272.2021.9385364

  17. Hwang, S., Park, S., Kim, D., Lee, J., Byun, H.: Mitigating inter-subject brain signal variability for EEG-based driver fatigue state classification. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, pp. 990–994 (2021). https://doi.org/10.1109/ICASSP39728.2021.9414613

  18. Jeon, S., Hong, K., Lee, P., Lee, J., Byun, H.: Feature stylization and domain-aware contrastive learning for domain generalization. In: Proceedings of the 29th ACM International Conference on Multimedia (2021)

    Google Scholar 

  19. Jin, Z., Zhou, G., Gao, D., Zhang, Y.: EEG classification using sparse bayesian extreme learning machine for brain-computer interface. Neural Comput. Appl. 32(11), 6601–6609 (2020)

    Article  Google Scholar 

  20. Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D., Shah, M.: Brain2Image: converting brain signals into images. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1809–1817 (2017)

    Google Scholar 

  21. Khurana, V., et al.: A survey on neuromarketing using EEG signals. IEEE Trans. Cogn. Dev. Syst. (2021). https://doi.org/10.1109/TCDS.2021.3065200

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  23. Ko, W., Oh, K., Jeon, E., Suk, H.I.: VIGNet: a deep convolutional neural network for EEG-based driver vigilance estimation. In: 2020 8th International Winter Conference on Brain-Computer Interface, BCI, pp. 1–3. IEEE (2020)

    Google Scholar 

  24. Kumar, P., Saini, R., Roy, P.P., Sahu, P.K., Dogra, D.P.: Envisioned speech recognition using EEG sensors. Pers. Ubiquit. Comput. 22(1), 185–199 (2018)

    Article  Google Scholar 

  25. Lee, J., Won, K., Kwon, M., Jun, S.C., Ahn, M.: CNN with large data achieves true zero-training in online P300 brain-computer interface. IEEE Access 8, 74385–74400 (2020). https://doi.org/10.1109/ACCESS.2020.2988057

    Article  Google Scholar 

  26. Lee, S.H., Lee, M., Lee, S.W.: Neural decoding of imagined speech and visual imagery as intuitive paradigms for BCI communication. IEEE Trans. Neural Syst. Rehabil. Eng. 28(12), 2647–2659 (2020)

    Article  Google Scholar 

  27. Li, M., et al.: The MindGomoku: an online P300 BCI game based on bayesian deep learning. Sensors 21(5), 1613 (2021)

    Article  Google Scholar 

  28. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  29. Mahato, S., Paul, S.: Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst. Technol. 25(3), 1065–1076 (2019)

    Article  Google Scholar 

  30. Placidi, G., Di Giamberardino, P., Petracca, A., Spezialetti, M., Iacoviello, D.: Classification of emotional signals from the deap dataset. In: International Congress on Neurotechnology, Electronics and Informatics, vol. 2, pp. 15–21. SCITEPRESS (2016)

    Google Scholar 

  31. Qin, W., Yu, C.: Neural pathways conveying novisual information to the visual cortex. Neural Plast. 2013, 864920 (2013)

    Article  Google Scholar 

  32. Ramsey, N.F., Van De Heuvel, M.P., Kho, K.H., Leijten, F.S.: Towards human BCI applications based on cognitive brain systems: an investigation of neural signals recorded from the dorsolateral prefrontal cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 214–217 (2006)

    Article  Google Scholar 

  33. Runnova, A., Selskii, A., Kiselev, A., Shamionov, R., Parsamyan, R., Zhuravlev, M.: Changes in EEG alpha activity during attention control in patients: association with sleep disorders. J. Personalized Med. 11(7), 601 (2021)

    Article  Google Scholar 

  34. Rutkowski, T.M., Koculak, M., Abe, M.S., Otake-Matsuura, M.: Brain correlates of task-load and dementia elucidation with tensor machine learning using oddball BCI paradigm. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, pp. 8578–8582. IEEE (2019)

    Google Scholar 

  35. Salenius, S., Kajola, M., Thompson, W., Kosslyn, S., Hari, R.: Reactivity of magnetic parieto-occipital alpha rhythm during visual imagery. Electroencephalogr. Clin. Neurophysiol. 95(6), 453–462 (1995)

    Article  Google Scholar 

  36. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  37. Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., Shah, M.: Deep learning human mind for automated visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6809–6817 (2017)

    Google Scholar 

  38. Stewart, A.X., Nuthmann, A., Sanguinetti, G.: Single-trial classification of EEG in a visual object task using ICA and machine learning. J. Neurosci. Methods 228, 1–14 (2014)

    Article  Google Scholar 

  39. Vert, J.P., Tsuda, K., Schölkopf, B.: A primer on kernel methods. Kernel Methods Comput. Biol. 47, 35–70 (2004)

    Google Scholar 

  40. Wolpaw, J.R., et al.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)

    Article  Google Scholar 

  41. Yuan, Y., Xun, G., Jia, K., Zhang, A.: A multi-view deep learning framework for EEG seizure detection. IEEE J. Biomed. Health Inform. 23(1), 83–94 (2018)

    Article  Google Scholar 

  42. Zhang, D., Yao, L., Chen, K., Monaghan, J.: A convolutional recurrent attention model for subject-independent EEG signal analysis. IEEE Signal Process. Lett. 26(5), 715–719 (2019). https://doi.org/10.1109/LSP.2019.2906824

    Article  Google Scholar 

  43. Zhou, M., et al.: Epileptic seizure detection based on EEG signals and CNN. Front. Neuroinform. 12, 95 (2018)

    Article  Google Scholar 

  44. Zickler, C., et al.: BCI applications for people with disabilities: defining user needs and user requirements. In: Assistive Technology from Adapted Equipment to Inclusive Environments, AAATE, vol. 25, pp. 185–189 (2009)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00451: Development of BCI based Brain and Cognitive Computing Technology for Recognizing Users Intentions using Deep Learning, No. 2020-0-01361: Artificial Intelligence Graduate School Program (YONSEI UNIVERSITY)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeran Byun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, P., Hwang, S., Jeon, S., Byun, H. (2022). Subject Adaptive EEG-Based Visual Recognition. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Springer, Cham. https://doi.org/10.1007/978-3-031-02444-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02444-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02443-6

  • Online ISBN: 978-3-031-02444-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics