Skip to main content

Intelligent Recognition of Point Source Target Image Control Points with Simulation Datasets

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13189))

Included in the following conference series:

  • 854 Accesses

Abstract

The point source target (PST) can provide high object and image positioning accuracy and is expected to play an important role in the precise geometric processing of optical remote sensing sensors in the future. This paper proposes a method for intelligently recognizing PST image control points (ICPs) from satellite imagery, which can improve the intelligent level of geometric processing of optical remote sensing sensors. Two deep convolutional neural networks (DCNNs), Faster R-CNN and CenterNet are selected to complete the recognition task. Due to the lack of training data, a large number of simulated samples are generated considering the PST image characteristics. The simulated and real PST ICPs are then used to test the trained DCNNs. The two DCNNs complete the recognition task on the simulated dataset successfully. The Recall and Precision values of the two DCNNs are close to 100%. The performance of the two DCNNs on real PST ICPs is worse than that on the simulated data, but the recognition task is also well completed when the quality of PST ICPs is good. The Recall values of both models are above 95%, and the Precision values are close to 100%. Experiment results also show that the performance of CenterNet is better than Faster R-CNN and the image quality has a great impact on the recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Y., Zheng, M., Xiong, J., Lu, Y., Xiong, X.: On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets. IEEE T. Geosci. Remote. 52, 224–234 (2014)

    Article  Google Scholar 

  2. Takaku, J., Tadono, T.: PRISM on-orbit geometric calibration and DSM performance. IEEE T. Geosci. Remote. 47(12), 4060–4073 (2009)

    Article  Google Scholar 

  3. Jiang, Y., Wang, J., Zhang, L., Zhang, G., Li, X., Wu, J.: Geometric processing and accuracy verification of Zhuhai-1 Hyperspectral satellites. Remote Sens. 11(9), 996 (2019)

    Article  Google Scholar 

  4. Zhang, G., Wang, J., Jiang, Y., Zhou, P., Zhao, Y., Xu, Y.: On-orbit geometric calibration and validation of Luojia 1–01 night-light satellite. Remote Sens. 11(3), 264 (2019)

    Article  Google Scholar 

  5. Jeong, J., Han, H., Park, Y.J.: A geometric accuracy analysis of the geostationary ocean color imager (GOCI) level 1B product. Opt. Express 28(5), 7634–7653 (2019)

    Article  Google Scholar 

  6. Westin, T.: Inflight calibration of SPOT CCD detector geometry. Photogramm. Eng. Rem. S. 58(9), 1313–1319 (1992)

    Google Scholar 

  7. Srivastava, P.K., Medha, S.A.: Inflight calibration of IRS-1C imaging geometry for data products. ISPRS J. Photogram. 52(5), 215–221 (1997)

    Article  Google Scholar 

  8. Seo, D., Oh, J., Lee, C., et al.: Geometric calibration and validation of Kompsat-3A AEISS-A camera. Sensors. 16(10), 1776 (2016)

    Article  Google Scholar 

  9. Poli, D., Remondino, F., Angiuli, E., et al.: Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction. ISPRS J. Photogram. 100, 35–47 (2015)

    Article  Google Scholar 

  10. Wang M., Cheng Y., Tian Y., et al.: A new on-orbit geometric self-calibration approach for the high-resolution geostationary optical satellite GaoFen4. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11(5), 1670–1683 (2018)

    Google Scholar 

  11. Qinghong, S., Qi, W., Hui, X., et al.: Research on geometric calibration of spaceborne linear array whiskbroom camera. Sensors. 18(1), 247 (2018)

    Article  Google Scholar 

  12. Dowman, I., Reuter, H.I.: Global geospatial data from Earth observation: status and issues. Int J. Digit. Earth. 10, 328–341 (2017)

    Article  Google Scholar 

  13. Wang, J., Wang, R., Hu, X., Su, Z.: The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite. ISPRS J. Photogram. 124, 144–151 (2017)

    Article  Google Scholar 

  14. Gascon, F., et al.: Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 9, 584 (2017)

    Article  Google Scholar 

  15. Tang X.M., Zhou P., Zhang G., Wang X., Jiang Y., Guo L., Liu, S.: Verification of ZY-3 satellite imagery geometric accuracy without ground control points. IEEE Geosci. Remote Sens. Lett. 12(10), 2100–2104 (2015)

    Google Scholar 

  16. Zhang, G., Jiang, Y., Li, D., et al.: In-orbit geometric calibration and validation of ZY-3 linear array sensors. Photogramm. Rec. 29(145), 68–88 (2014)

    Article  Google Scholar 

  17. Gaparovi, M., Dobrini, D., Medak, D.: Geometric accuracy improvement of WorldView-2 imagery using freely available DEM data. Photogramm. Rec. 34, 266–281 (2019)

    Article  Google Scholar 

  18. Jiang, Y.H., Zhang, G., Tang, X.M., et al.: Geometric calibration and accuracy assessment of ZiYuan-3 multispectral images. IEEE T. Geosci. Remote. 52(7), 4161–4172 (2014)

    Google Scholar 

  19. Cao, J., Yuan, X., Gong, J.: In-orbit geometric calibration and validation of ZY-3 three-line cameras based on CCD-detector look angles. Photogramm. Rec. 30(150), 211–226 (2015)

    Article  Google Scholar 

  20. Li, K., Zhang, Y., Zhang, Z., Yu, Y.: An Automatic recognition and positioning method for point source targets on satellite images. ISPRS Int. J. Geo-Inf. 7(11), 434 (2018)

    Article  Google Scholar 

  21. Rauchmiller, R.F., Robert, A.S.: measurement of the landsat thematic mapper modulation transfer function using an array of point sources. Opt. Eng. 27(4), 334–343 (1988)

    Article  Google Scholar 

  22. Rangaswamy, M.K., Quickbird, II.: Two-dimensional on-orbit modulation transfer function analysis using convex mirror array. M.S. thesis, Dept. Electr. Eng., South Dakota State Univ., SD, USA (2003)

    Google Scholar 

  23. Schiller, S.J., Silny, J.: The SPecular Array Radiometric Calibration (SPARC) method: a new approach for absolute vicarious calibration in the solar reflective spectrum. In: Proc, p. 78130E. SPIE, San Diego, California, USA (2010)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  25. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: object detection with keypoint triplets. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  26. Chander, G., et al.: Landsat-5 TM reflective-band absolute radiometric calibration. IEEE T. Geosci. Remote. 42(12), 2747–2760 (2004)

    Article  Google Scholar 

  27. Czapla-Myers, J., et al.: The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sens. 7(1), 600–626 (2015)

    Article  Google Scholar 

  28. Chao, X., Zhaoli, L., Guanglei, H.: Simulation of the Impact of a Sensor’s PSF on mixed pixel decomposition: 1 Nonuniformity Effect. Remote Sens. 8(5), 437 (2016)

    Article  Google Scholar 

  29. Girshick, R., Girshick, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic, segmentation. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, pp. 580–587, 24–27 June 2014

    Google Scholar 

  30. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, pp. 1440–1448. 13–16 December 2015

    Google Scholar 

  31. Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: European Conference on Computer Vision, Santiago, Chile, 8–14 September 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, K., Yang, W., Zhang, L., Zhang, Z. (2022). Intelligent Recognition of Point Source Target Image Control Points with Simulation Datasets. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Springer, Cham. https://doi.org/10.1007/978-3-031-02444-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02444-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02443-6

  • Online ISBN: 978-3-031-02444-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics