Abstract
This paper considers a swarm optimisation approach to few-view tomographic reconstruction. DFOMAX, a high diversity swarm optimiser, demonstrably reconstructs binary images to a high fidelity, outperforming a leading algebraic technique, differential evolution and particle swarm optimisation on four standard phantoms. The paper considers the effectiveness of optimisers that have been developed for optimal low dimensional performance and concludes that trial solution clamping on the walls of the feasible search space is important for good performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
al-Rifaie, M.M.: Dispersive flies optimisation. In: M. Ganzha, L. Maciaszek, M.P. (ed.) Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 529–538. IEEE (2014). https://doi.org/10.15439/2014F142
al-Rifaie, M.M.: Investigating knowledge-based exploration-exploitation balance in a minimalist swarm optimiser. In: IEEE Congress on Evolutionary Computation. CEC 2021. IEEE (2021)
al-Rifaie, M.M., Aber, A.: Dispersive flies optimisation and medical imaging. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 610, pp. 183–203. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21133-6_11
al-Rifaie, M.M., Blackwell, T.: Binary tomography reconstruction by particle aggregation. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 754–769. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_48
al-Rifaie, M.M., Cavazza, M.: Evolutionary optimisation of beer organoleptic properties: a simulation framework. Foods 11(3), 351 (2022). https://doi.org/10.3390/foods11030351
al-Rifaie, M.M., Ursyn, A., Zimmer, R., Javid, M.A.J.: On symmetry, aesthetics and quantifying symmetrical complexity. In: Correia, J., Ciesielski, V., Liapis, A. (eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 17–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55750-2_2
Aparajeya, P., Leymarie, F.F., al-Rifaie, M.M.: Swarm-based identification of animation key points from 2D-medialness maps. In: Ekárt, A., Liapis, A., Castro Pena, M.L. (eds.) EvoMUSART 2019. LNCS, vol. 11453, pp. 69–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16667-0_5
Batenburg, K.J., Kosters, W.A.: Solving nonograms by combining relaxations. Pattern Recogn. 42(8), 1672–1683 (2009)
Batenburg, K.J., Palenstijn, W.J.: On the reconstruction of crystals through discrete tomography. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 23–37. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3_2
Blackwell, T., Kennedy, J.: Impact of communication topology in particle swarm optimization. IEEE Trans. Evol. Comput. 23(4), 689–702 (2019)
Blackwell, T.: A study of collapse in bare bones particle swarm optimization. IEEE Trans. Evol. Comput. 16(3), 354–372 (2011)
Butala, M., Hewett, R., Frazin, R., Kamalabadi, F.: Dynamic three-dimensional tomography of the solar corona. Sol. Phys. 262(2), 495–509 (2010)
Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
Carazo, J.M., Sorzano, C.O., Rietzel, E., Schröder, R., Marabini, R.: Discrete tomography in electron microscopy. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography. ANHA, pp. 405–416. Birkhäuser Boston, Boston, MA (1999). https://doi.org/10.1007/978-1-4612-1568-4_18
Carvalho, B.M., Herman, G.T., Matej, S., Salzberg, C., Vardi, E.: Binary tomography for triplane cardiography. In: Kuba, A., Šáamal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 29–41. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48714-X_3
Cipolla, M., Bosco, G.L., Millonzi, F., Valenti, C.: An island strategy for memetic discrete tomography reconstruction. Inf. Sci. 257, 357–368 (2014)
Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011). https://doi.org/10.1109/TEVC.2010.2059031
Gálvez, A., Iglesias, A.: Particle swarm optimization for non-uniform rational b-spline surface reconstruction from clouds of 3D data points. Inf. Sci. 192, 174–192 (2012)
Gardner, R.J.: Geometric Tomography, vol. 1. Cambridge University Press, Cambridge (1995)
Geyer, L.L., et al.: State of the art: iterative CT reconstruction techniques. Radiology 276(2), 339–357 (2015)
Giussani, A., Hoeschen, C.: Imaging in Nuclear Medicine. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-31415-5
Hampel, U.: High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications. Rev. Sci. Instrum. 78(10), 103704 (2007)
Hu, G., Chen, M., He, W., Zhai, J.: Clustering-based particle swarm optimization for electrical impedance imaging. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011. LNCS, vol. 6728, pp. 165–171. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21515-5_20
Irving, R., Jerrum, M.: Three-dimensional data security problems. SIAM J. Comput. 23, 170–184 (1994)
Jarray, F., Tlig, G., Dakhli, A.: Reconstructing hv-convex images by tabu research approach. In: International Conference on Metaheuristics and Nature Inspired Computing, p. 3 (2010)
Jarray, F., Tlig, G.: A simulated annealing for reconstructing hv-convex binary matrices. Electron. Not. Discr. Math. 36, 447–454 (2010)
Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999, Congress of Evolutionary Computation, vol. 3, pp. 1931–1938. IEEE Press (1999)
Lucas, A., Iliadis, M., Molina, R., Katsaggelos, A.K.: Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process. Mag. 35(1), 20–36 (2018)
Miklós, P.: Particle swarm optimization approach to discrete tomography reconstruction problems of binary matrices. In: 2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY), pp. 321–324. IEEE (2014)
Nolet, G., et al.: A breviary of seismic tomography. Imaging the Interior (2008)
Oroojeni, H., al-Rifaie, M.M., Nicolaou, M.A.: Deep neuroevolution: Training deep neural networks for false alarm detection in intensive care units. In: European Association for Signal Processing (EUSIPCO) 2018, pp. 1157–1161. IEEE (2018). https://doi.org/10.23919/EUSIPCO.2018.8552944
Ouaddah, A., Boughaci, D.: Improving reconstructed images using hybridization between local search and harmony search meta-heuristics. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1475–1476. ACM (2014)
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: An overview. Swarm Intell. 1, 33–57 (2007)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Congress on Evolutionary Computation, pp. 69–73 (1998)
Shliferstein, A.R., Chien, Y.: Some properties of image-processing operations on projection sets obtained from digital pictures. IEEE Trans. Comput. 26(10), 958–970 (1977)
Tao, T.: Compressed sensing or: the equation ax= b, revisited. Mahler Lecture Series (2009)
Tronicke, J., Paasche, H., Böniger, U.: Crosshole traveltime tomography using particle swarm optimization: a near-surface field example. Geophysics 77(1), R19–R32 (2012)
Wang, P., Lin, J., Wang, M.: An image reconstruction algorithm for electrical capacitance tomography based on simulated annealing particle swarm optimization. J. Appl. Res. Technol. 13(2), 197–204 (2015)
Acknowledgement
The authors would like to thank Darren Wise for his support in facilitating access to the HPC machines at the University of Greenwich.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
al-Rifaie, M.M., Blackwell, T. (2022). Swarm Optimised Few-View Binary Tomography. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-02462-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-02461-0
Online ISBN: 978-3-031-02462-7
eBook Packages: Computer ScienceComputer Science (R0)