Skip to main content

Swarm Optimised Few-View Binary Tomography

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

This paper considers a swarm optimisation approach to few-view tomographic reconstruction. DFOMAX, a high diversity swarm optimiser, demonstrably reconstructs binary images to a high fidelity, outperforming a leading algebraic technique, differential evolution and particle swarm optimisation on four standard phantoms. The paper considers the effectiveness of optimisers that have been developed for optimal low dimensional performance and concludes that trial solution clamping on the walls of the feasible search space is important for good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.astra-toolbox.com.

References

  1. al-Rifaie, M.M.: Dispersive flies optimisation. In: M. Ganzha, L. Maciaszek, M.P. (ed.) Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 529–538. IEEE (2014). https://doi.org/10.15439/2014F142

  2. al-Rifaie, M.M.: Investigating knowledge-based exploration-exploitation balance in a minimalist swarm optimiser. In: IEEE Congress on Evolutionary Computation. CEC 2021. IEEE (2021)

    Google Scholar 

  3. al-Rifaie, M.M., Aber, A.: Dispersive flies optimisation and medical imaging. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 610, pp. 183–203. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21133-6_11

    Chapter  Google Scholar 

  4. al-Rifaie, M.M., Blackwell, T.: Binary tomography reconstruction by particle aggregation. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 754–769. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_48

    Chapter  Google Scholar 

  5. al-Rifaie, M.M., Cavazza, M.: Evolutionary optimisation of beer organoleptic properties: a simulation framework. Foods 11(3), 351 (2022). https://doi.org/10.3390/foods11030351

    Article  Google Scholar 

  6. al-Rifaie, M.M., Ursyn, A., Zimmer, R., Javid, M.A.J.: On symmetry, aesthetics and quantifying symmetrical complexity. In: Correia, J., Ciesielski, V., Liapis, A. (eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 17–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55750-2_2

    Chapter  Google Scholar 

  7. Aparajeya, P., Leymarie, F.F., al-Rifaie, M.M.: Swarm-based identification of animation key points from 2D-medialness maps. In: Ekárt, A., Liapis, A., Castro Pena, M.L. (eds.) EvoMUSART 2019. LNCS, vol. 11453, pp. 69–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16667-0_5

    Chapter  Google Scholar 

  8. Batenburg, K.J., Kosters, W.A.: Solving nonograms by combining relaxations. Pattern Recogn. 42(8), 1672–1683 (2009)

    Article  Google Scholar 

  9. Batenburg, K.J., Palenstijn, W.J.: On the reconstruction of crystals through discrete tomography. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 23–37. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3_2

    Chapter  Google Scholar 

  10. Blackwell, T., Kennedy, J.: Impact of communication topology in particle swarm optimization. IEEE Trans. Evol. Comput. 23(4), 689–702 (2019)

    Article  Google Scholar 

  11. Blackwell, T.: A study of collapse in bare bones particle swarm optimization. IEEE Trans. Evol. Comput. 16(3), 354–372 (2011)

    Article  Google Scholar 

  12. Butala, M., Hewett, R., Frazin, R., Kamalabadi, F.: Dynamic three-dimensional tomography of the solar corona. Sol. Phys. 262(2), 495–509 (2010)

    Article  Google Scholar 

  13. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  14. Carazo, J.M., Sorzano, C.O., Rietzel, E., Schröder, R., Marabini, R.: Discrete tomography in electron microscopy. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography. ANHA, pp. 405–416. Birkhäuser Boston, Boston, MA (1999). https://doi.org/10.1007/978-1-4612-1568-4_18

    Chapter  Google Scholar 

  15. Carvalho, B.M., Herman, G.T., Matej, S., Salzberg, C., Vardi, E.: Binary tomography for triplane cardiography. In: Kuba, A., Šáamal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 29–41. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48714-X_3

    Chapter  Google Scholar 

  16. Cipolla, M., Bosco, G.L., Millonzi, F., Valenti, C.: An island strategy for memetic discrete tomography reconstruction. Inf. Sci. 257, 357–368 (2014)

    Article  MathSciNet  Google Scholar 

  17. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011). https://doi.org/10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  18. Gálvez, A., Iglesias, A.: Particle swarm optimization for non-uniform rational b-spline surface reconstruction from clouds of 3D data points. Inf. Sci. 192, 174–192 (2012)

    Article  Google Scholar 

  19. Gardner, R.J.: Geometric Tomography, vol. 1. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  20. Geyer, L.L., et al.: State of the art: iterative CT reconstruction techniques. Radiology 276(2), 339–357 (2015)

    Article  Google Scholar 

  21. Giussani, A., Hoeschen, C.: Imaging in Nuclear Medicine. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-31415-5

    Book  Google Scholar 

  22. Hampel, U.: High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications. Rev. Sci. Instrum. 78(10), 103704 (2007)

    Article  Google Scholar 

  23. Hu, G., Chen, M., He, W., Zhai, J.: Clustering-based particle swarm optimization for electrical impedance imaging. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011. LNCS, vol. 6728, pp. 165–171. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21515-5_20

    Chapter  Google Scholar 

  24. Irving, R., Jerrum, M.: Three-dimensional data security problems. SIAM J. Comput. 23, 170–184 (1994)

    Article  MathSciNet  Google Scholar 

  25. Jarray, F., Tlig, G., Dakhli, A.: Reconstructing hv-convex images by tabu research approach. In: International Conference on Metaheuristics and Nature Inspired Computing, p. 3 (2010)

    Google Scholar 

  26. Jarray, F., Tlig, G.: A simulated annealing for reconstructing hv-convex binary matrices. Electron. Not. Discr. Math. 36, 447–454 (2010)

    Article  Google Scholar 

  27. Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999, Congress of Evolutionary Computation, vol. 3, pp. 1931–1938. IEEE Press (1999)

    Google Scholar 

  28. Lucas, A., Iliadis, M., Molina, R., Katsaggelos, A.K.: Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process. Mag. 35(1), 20–36 (2018)

    Article  Google Scholar 

  29. Miklós, P.: Particle swarm optimization approach to discrete tomography reconstruction problems of binary matrices. In: 2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY), pp. 321–324. IEEE (2014)

    Google Scholar 

  30. Nolet, G., et al.: A breviary of seismic tomography. Imaging the Interior (2008)

    Google Scholar 

  31. Oroojeni, H., al-Rifaie, M.M., Nicolaou, M.A.: Deep neuroevolution: Training deep neural networks for false alarm detection in intensive care units. In: European Association for Signal Processing (EUSIPCO) 2018, pp. 1157–1161. IEEE (2018). https://doi.org/10.23919/EUSIPCO.2018.8552944

  32. Ouaddah, A., Boughaci, D.: Improving reconstructed images using hybridization between local search and harmony search meta-heuristics. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1475–1476. ACM (2014)

    Google Scholar 

  33. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: An overview. Swarm Intell. 1, 33–57 (2007)

    Article  Google Scholar 

  34. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Congress on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

  35. Shliferstein, A.R., Chien, Y.: Some properties of image-processing operations on projection sets obtained from digital pictures. IEEE Trans. Comput. 26(10), 958–970 (1977)

    Article  MathSciNet  Google Scholar 

  36. Tao, T.: Compressed sensing or: the equation ax= b, revisited. Mahler Lecture Series (2009)

    Google Scholar 

  37. Tronicke, J., Paasche, H., Böniger, U.: Crosshole traveltime tomography using particle swarm optimization: a near-surface field example. Geophysics 77(1), R19–R32 (2012)

    Article  Google Scholar 

  38. Wang, P., Lin, J., Wang, M.: An image reconstruction algorithm for electrical capacitance tomography based on simulated annealing particle swarm optimization. J. Appl. Res. Technol. 13(2), 197–204 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Darren Wise for his support in facilitating access to the HPC machines at the University of Greenwich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Majid al-Rifaie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

al-Rifaie, M.M., Blackwell, T. (2022). Swarm Optimised Few-View Binary Tomography. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics