Skip to main content

Co-evolution of Spies and Resistance Fighters

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

We use an evolution strategy to evolve game strategies for resistance fighters as well as spies for the popular card game “The Resistance”. In our experiment, players only communicate via observable actions. Players are judged by how they behave and not by what they say. Resistance fighters observe the behavior of all game players and try to deduce who is a spy by maintaining a score that represents who is likely to be a spy. Players likely to be spies are not taken on a mission. Spies use probabilities for their behavior. We use co-evolution to evolve resistance fighters and spies. Fitness plots seem to indicate that no progress is being made, i.e. we clearly see the Red Queen Effect in our experiments. However, the master tournament and current individual vs ancestral opponents method show that evolutionary progress is being made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cardona, A.B., Togelius, J., Nelson, M.J.: Competitive coevolution in ms. pac-man. In: IEEE Congress on Evolutionary Computation, pp. 1403–1410. IEEE (2013)

    Google Scholar 

  2. Cliff, D., Miller, G.F.: Tracking the Red Queen: measurements of adaptive progress in co-evolutionary simulations. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 200–218. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_300

    Chapter  Google Scholar 

  3. Cliff, D., Miller, G.F.: Co-evolution of pursuit and evasion II: simulation methods and results. In: Maes, P., Mataric, M.J., Meyer, J.A., Pollack, J., Wilson, S.W. (eds.) From Animals to Animats 4: Proceedings of the 4th International Conference on Simulation of Adaptive Behavior, pp. 506–515. The MIT Press, Cambridge (1996)

    Google Scholar 

  4. Crawford-Marks, R., Spector, L., Klein, J.: Virtual witches and warlocks: A quidditch simulator and quidditch-playing teams coevolved via genetic programming. In: Keijzer, M. (ed.) Late Breaking Papers at the 2004 Genetic and Evolutionary Computation Conference. Seattle, Washington (2004)

    Google Scholar 

  5. Dawkins, R., Krebs, J.R.: Arms races between and within species. Proc. R. Soc. Lond. B 205, 489–511 (1979)

    Article  Google Scholar 

  6. Ebner, M.: Evolution and growth of virtual plants. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 228–237. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_25

    Chapter  Google Scholar 

  7. Ebner, M.: Coevolution and the Red Queen effect shape virtual plants. Genet. Program Evolvable Mach. 7(1), 103–123 (2006)

    Article  Google Scholar 

  8. Ebner, M., Grigore, A., Heffner, A., Albert, J.: Coevolution produces an arms race among virtual plants. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 316–325. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45984-7_31

    Chapter  Google Scholar 

  9. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2007). https://doi.org/10.1007/978-3-662-05094-1

  10. Ficici, S.G., Pollack, J.B.: A game-theoretic memory mechanism for coevolution. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 286–297. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_35

    Chapter  Google Scholar 

  11. Floreano, D., Nolfi, S.: God save the red queen! competition in co-evolutionary robotics. In: Koza, J.R., et al. (eds.) Genetic Programming 1997: Proceedings of the Second International Conference on Genetic Programming, pp. 398–406. Morgan Kaufmann Publishers, San Francisco (1997)

    Google Scholar 

  12. Floreano, D., Nolfi, S., Mondada, F.: Competitive co-evolutionary robotics: from theory to practice. In: Pfeifer, R., Blumberg, B., Meyer, J.A., Wilson, S.W. (eds.) From Animals to Animats 5: Proceedings of the Fifth International Conf. on Simulation of Adaptive Behavior, pp. 515–524. The MIT Press, Cambridge (1998)

    Google Scholar 

  13. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

    MathSciNet  Google Scholar 

  14. Francisco, T., dos Reis, G.M.J.: Evolving combat algorithms to control space ships in a 2D space simulation game with co-evolution using genetic programming and decision trees. In: GECCO Workshop Proceedings: Defense Applications of Computational Intelligence, Atlanta, GA, pp. 1887–1892. ACM, New York (2008)

    Google Scholar 

  15. Francisco, T., dos Reis, G.M.J.: Evolving predator and prey behaviours with co-evolution using genetic programming and decision trees. In: GECCO Workshop Proceedings: Defense Applications of Computational Intelligence, Atlanta, GA 12-16, pp. 1893–1900. ACM, New York (2008)

    Google Scholar 

  16. Funes, P., Sklar, E., Juillé, H., Pollack, J.: Animal-animat coevolution: using the animal population as fitness function. In: Pfeifer, R., Blumberg, B., Meyer, J.A., Wilson, S.W. (eds.) From Animals to Animats 5: Proceedings of the 5th International Conference on Simulation of Adaptive Behavior, pp. 525–533. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Gerdes, I., Klawonn, F., Kruse, K.: Evolutionäre Algorithmen. Vieweg Verlag, Wiesbaden (2004)

    Google Scholar 

  18. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, SFI Studies in the Sciences of Complexity, pp. 313–324. Addison-Wesley, Reading (1991)

    Google Scholar 

  19. Jong, E.D.: The incremental pareto-coevolution archive. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 525–536. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_55

    Chapter  Google Scholar 

  20. Luke, S., Wiegand, R.P.: Guaranteeing coevolutionary objective measures. In: Foundations of Genetic Algorithms VII, pp. 237–251. Morgan Kaufman, San Francisco (2002)

    Google Scholar 

  21. Miller, G.F., Cliff, D.: Protean behavior in dynamic games: arguments for the co-evolution of pursuit-evasion tactics. In: Cliff, D., Husbands, P., Meyer, J., Wilson, S.W. (eds.) From Animals to Animats III: Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior, pp. 411–420. The MIT Press, Cambridge (1994)

    Google Scholar 

  22. Nolfi, S., Floreano, D.: Co-evolving predator and prey robots: Do ‘arms races’ arise in artificial evolution? Artif. Life 4(4), 311–335 (1998)

    Article  Google Scholar 

  23. Ochoa, G., Jaffé, K.: On sex, mate selection and the Red Queen. J. Theor. Biol. 199, 1–9 (1999)

    Article  Google Scholar 

  24. Rechenberg, I.: Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart (1994)

    Google Scholar 

  25. Ridley, M.: The Red Queen: Sex and the Evolution of Human Nature. Penguin Books, New York (1994)

    Google Scholar 

  26. Rosenzweig, M.L., Brown, J.S., Vincent, T.L.: Red queens and ESS: the coevolution of evolutionary rates. Evol. Ecol. 1, 59–94 (1987)

    Article  Google Scholar 

  27. Rosin, B.: New methods for competitive coevolution. Technical report CS96-491, Cognitive Computer Science Research Group, Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA (1996)

    Google Scholar 

  28. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    MATH  Google Scholar 

  29. Spronck, P., Cowling, P., Champandard, A., Lanzi, P.L., Paiva, A.: AI for modern board games. In: Lucas, S.M., Mateas, M., Preuss, M., Spronck, P., Togelius, J. (eds.) Artificial and Computational Intelligence in Games, pp. 58–59. Dagstuhl Publishing, Schloss Dagstuhl (2012)

    Google Scholar 

  30. Stanley, K.O., Miikkulainen, R.: The dominance tournament method of monitoring progress in coevolution. In: Barry, A. (ed.) Genetic and Evolutionary Computation Conference Workshop Program, pp. 242–248 (2002)

    Google Scholar 

  31. Taylor, D.P.: Trust-based, multi-agent board games with imperfect information with Don Eskridge’s “the resistance”. Technical report Bachelor of Science Project, University of Derby, School of Computing & Mathematics (2014)

    Google Scholar 

  32. Togelius, J., Burrow, P., Lucas, S.M.: Multi-population competitive co-evolution of car racing controllers. In: Srinivasan, D., Wang, L. (eds.) IEEE Congress on Evoutionary Comp., Singapore, pp. 4043–4050. IEEE Press, Piscataway (2007)

    Google Scholar 

  33. Valen, L.V.: A new evolutionary law. Evol. Theory 1, 1–30 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lange, J., Stanke, M., Ebner, M. (2022). Co-evolution of Spies and Resistance Fighters. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics