Skip to main content

Combining the Properties of Random Forest with Grammatical Evolution to Construct Ensemble Models

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

Random Forest algorithm is a prediction technique where a set of tree predictors are combined to construct an ensemble model. If a set of conditions are satisfied, we can affirm that random forest avoids overfitting and converges. On the other hand, grammatical evolution, the popular variant of genetic programming where solutions are built following a grammar, has been successfully applied to a plethora of different problems. Among them, symbolic regression is one of the hits of grammatical evolution. Although encoded in codons and decoded by a grammar, solutions in grammatical evolution are trees that represent mathematical expressions. In this paper, we investigate the convenience of combining the best of both approaches, and we propose Random Structured Grammatical Evolution as an adaptation of Random Forest to a symbolic regression problem. Using structured Grammatical Evolution, a set of weak predictors are built and combined on an ensemble model for prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Roomi, A.R., El-Hawary, M.E.: Universal functions originator. Appl. Soft Comput. 94, 106417 (2020)

    ArticleĀ  Google ScholarĀ 

  2. Ashok, D., Scott, J., Wetzel, S.J., Panju, M., Ganesh, V.: Logic guided genetic algorithms. CoRR abs/2010.11328 (2020)

    Google ScholarĀ 

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123ā€“140 (1996)

    MATHĀ  Google ScholarĀ 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5ā€“32 (2001)

    ArticleĀ  Google ScholarĀ 

  5. Hidalgo, J.I., Maqueda, E., Risco-Martin, J.L., Cuesta-Infante, A., Colmenar, J.M., Nobel, J.: glucmodel: a monitoring and modeling system for chronic diseases applied to diabetes. J. Biomed. Inform. 48, 183ā€“192 (2014)

    ArticleĀ  Google ScholarĀ 

  6. Hidalgo, J.I., Colmenar, J.M., Kronberger, G., Winkler, S.M., Garnica, O., Lanchares, J.: Data based prediction of blood glucose concentrations using evolutionary methods. J. Med. Syst. 41(9), 142 (2017)

    ArticleĀ  Google ScholarĀ 

  7. Jin, Y., Fu, W., Kang, J., Guo, J., Guo, J.: Bayesian symbolic regression (2020)

    Google ScholarĀ 

  8. Kommenda, M., Kronberger, G., Wagner, S., Winkler, S., Affenzeller, M.: On the architecture and implementation of tree-based genetic programming in heuristiclab. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, New York, NY, USA , pp. 101ā€“108. GECCO 2012, ACM (2012)

    Google ScholarĀ 

  9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)

    MATHĀ  Google ScholarĀ 

  10. LourenƧo, N., Colmenar, J.M., Hidalgo, J.I., Garnica, Ɠ.: Structured grammatical evolution for glucose prediction in diabetic patients. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1250ā€“1257. ACM (2019)

    Google ScholarĀ 

  11. LourenƧo, N., Pereira, F.B., Costa, E.: Unveiling the properties of structured grammatical evolution. Genet. Program Evol. Mach. 17(3), 251ā€“289 (2016). https://doi.org/10.1007/s10710-015-9262-4

    ArticleĀ  Google ScholarĀ 

  12. Oliveira, L.O.V.B., Martins, J.F.B.S., Miranda, L.F., Pappa, G.L.: Analysing symbolic regression benchmarks under a meta-learning approach. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO 2018, New York, NY, USA, pp. 1342ā€“1349. Association for Computing Machinery (2018)

    Google ScholarĀ 

  13. Petersen, B.K., Larma, M.L., Mundhenk, T.N., Santiago, C.P., Kim, S.K., Kim, J.T.: Deep symbolic regression: recovering mathematical expressions from data via risk-seeking policy gradients (2021)

    Google ScholarĀ 

  14. Ryan, C., Nicolau, M., Oā€™Neill, M.: Genetic algorithms using grammatical evolution. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 278ā€“287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45984-7_27

    ChapterĀ  MATHĀ  Google ScholarĀ 

  15. Ryan, Conor, Oā€™Neill, Michael, Collins, J.J. (eds.): Handbook of Grammatical Evolution. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6

    BookĀ  Google ScholarĀ 

  16. Schapire, R.E., Freund, Y.: Boosting: Foundations and Algorithms. The MIT Press, Cambridge (2012)

    MATHĀ  Google ScholarĀ 

  17. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81ā€“85 (2009)

    ArticleĀ  Google ScholarĀ 

  18. Udrescu, S.M., Tegmark, M.: Ai feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6(16), 2631 (2020)

    ArticleĀ  Google ScholarĀ 

  19. Velasco, J.M., Garnica, O., Lanchares, J., Botella, M., Hidalgo, J.I.: Combining data augmentation, EDAS and grammatical evolution for blood glucose forecasting. Memetic Comput. 10(3), 267ā€“277 (2018)

    ArticleĀ  Google ScholarĀ 

  20. Zhou, Z.H.: Ensemble Learning, pp. 411ā€“416. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7488-4_293

    BookĀ  Google ScholarĀ 

Download references

Acknowledgments

Work financed by the Community of Madrid and co-financed by the EU Structural Funds through the Community of Madrid projects B2017/BMD3773 (GenObIA-CM) and Y2018/NMT-4668 (Micro-Stress - MAP-CM). Also financed by the PhD project IND2020/TIC-17435 and Spanish Ministry of Economy and Competitiveness with number RTI2018-095180-B-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Parra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parra, D., GutiƩrrez, A., Velasco, JM., Garnica, O., Hidalgo, J.I. (2022). Combining the Properties of Random Forest with Grammatical Evolution to Construct Ensemble Models. In: JimƩnez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics