Skip to main content

The Multivariable Control for Dynamic Partially Observable Objects

  • Conference paper
  • First Online:
Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques (AUTOMATION 2022)

Abstract

The article is devoted to the development of multivariable control algorithm as for functionally complex objects class, which has a nonlinear feedback. In most cases, only part of the system is measured by output that demands the linearity of some input. Obviously, the observable nonlinear systems are not diffeomorphic to linear systems. So that the output actions and inputs of those systems does not distinguish some set of different initial states. That condition changes order of complexity of the singular analysis of inputs, although a complete theory, which allows the design of an observer, for these unobservable systems does not exist. This paper presents the results of hybrid control algorithm that involved by response of inverse dynamic. The control of drying process, where the filling of chamber is increased, has been taken as a base for comparison of results of parametrical stability. We made this for the spray drying process to minimize the quality losses of product by adjustments of the input flows of dryer according to internal disturbances and process constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Korobiichuk, I., Ladaniuk, A., Ivashchuk, V.: Features of control for multi-assortment technological process. In: Szewczyk, R., Krejsa, J., Nowicki, M., Ostaszewska-Liżewska, A. (eds.) MECHATRONICS 2019. AISC, vol. 1044, pp. 214–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29993-4_27

    Chapter  Google Scholar 

  2. Korobiichuk, I., Ladanyuk, A., Shumyhai, D., Boyko, R., Reshetiuk, V., Kamiński, M.: How to Increase efficiency of automatic control of complex plants by development and implementation of coordination control system. In: Szewczyk, R., Kaliczyńska, M. (eds.) SCIT 2016. AISC, vol. 543, pp. 189–195. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48923-0_23

    Chapter  Google Scholar 

  3. Korobiichuk, I., Ladanyuk, A., Zaiets, N., Vlasenko, L.: Modern development technologies and investigation of food production technological complex automated systems. In: Paper Presented at the ACM International Conference Proceeding Series, pp. 52–56 (2018). https://doi.org/10.1145/3185066.3185075

  4. Kharlamenko, V., Ruban, S., Korobiichuk, I., Petruk, O.: Adaptive control of dynamic load in blooming mill with online estimation of process parameters based on the modified kaczmarz algorithm. In: Szewczyk, R., Kaliczyńska, M. (eds.) SCIT 2016. AISC, vol. 543, pp. 227–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48923-0_28

    Chapter  Google Scholar 

  5. Korobiichuk, I., et al.: Synthesis of optimal robust regulator for food processing facilities. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) ICA 2017. AISC, vol. 550, pp. 58–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54042-9_5

    Chapter  Google Scholar 

  6. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser Verlag (2009)

    Google Scholar 

  7. Sacchelli, L., Brivadis, L., Andrieu, V., Serres, U., Gauthier, J.-P.: Dynamic output feedback stabilization of non-uniformly observable dissipative systems. In: 21st IFAC World Congress (Virtual), Berlin, Germany, pp. 4997–5002 (2020)

    Google Scholar 

  8. Besancon, G., Hammouri, H.: On observer design for interconnected systems. J. Math. Syst. Estim. Control 8(3), 1–25 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Chan, J.C.L., Lee, T.H., Tan, C.P.: Observer-based fault-tolerant control for non-infinitely observable descriptor systems. In: Park, J.H. (ed.) Recent Advances in Control Problems of Dynamical Systems and Networks. SSDC, vol. 301, pp. 123–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49123-9_6

    Chapter  Google Scholar 

  10. Długosz, M., Baranowski, J.: Observer design for estimation of nonobservable states in buildings. Math. Probl. Eng. 2020, 1–8 (2020). https://doi.org/10.1155/2020/3404951

    Article  MATH  Google Scholar 

  11. Jo, N., Seo, J.: Observer design for non-linear systems that are not uniformly observable. Int. J. Control 75(5), 369–380 (2002). https://doi.org/10.1080/00207170110112287

    Article  MathSciNet  MATH  Google Scholar 

  12. Jover, C., Alastruey, C.F.: Multivariable control for an industrial rotary dryer. J. Food Control 17(8), 653–659 (2006)

    Article  Google Scholar 

  13. Utkin, V.: Sliding modes in control and optimization. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-84379-2

    Book  MATH  Google Scholar 

  14. Kolesov, Y., Senichenkov, Y.: Mathematical Modeling of Complex Dynamical Systems. Polytech-Press, St. Petersburg (2019)

    Google Scholar 

  15. Kim, A.V.: I-Smooth Analysis. Theory and Applications: monograph. Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences (2015)

    Google Scholar 

  16. Pukdeboon, C.: Lyapunov optimizing sliding mode control for attitude tracking of spacecraft. Int. J. Pure Appl. Math. 80(1), 25–40 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Korobiichuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivashchuk, V., Korobiichuk, I. (2022). The Multivariable Control for Dynamic Partially Observable Objects. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques. AUTOMATION 2022. Advances in Intelligent Systems and Computing, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-031-03502-9_11

Download citation

Publish with us

Policies and ethics