Abstract
In the paper the initial problem for a scalar, discrete, fractional order system is addressed. The fractional operator is expressed using Continuous Fraction Expansion approximation. Results are illustrated by simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Alaoui, M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993)
Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional order systems: modeling and control applications. In: Chua, L.O. (ed.) World Scientific Series on Nonlinear Science, pp. 1–178. University of California, Berkeley (2010)
Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(3), 263–269 (2002)
Das, S.: Functional Fractional Calculus for System Identyfication and Control. Springer, Berlin (2010)
Dzieliński, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)
Gal, C.G., Warma, M.: Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evol. Equ. Control Theory 5(1), 61–103 (2016)
Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin (2011)
Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok (2014)
Mozyrska, D., Pawluszewicz, E.: Fractional discrete-time linear control systems with initialisation. Int. J. Control 1(1), 1–7 (2011)
Obrączka, A.: Control of heat processes with the use of non-integer models. Ph.D. thesis, AGH University, Krakow, Poland (2014)
Oprzędkiewicz, K., Mitkowski, W.: A memory efficient non integer order discrete time state space model of a heat transfer process. Int. J. Appl. Math. Comput. Sci. 28(4), 649–659 (2018)
Oprzędkiewicz, K., Stanisławski, R., Gawin, E., Mitkowski, W.: A new algorithm for a CFE approximated solution of a discrete-time non integer-order state equation. Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 429–437 (2017)
Ostalczyk, P.: Discrete Fractional Calculus. Applications in Control and Image Processing. World Scientific, Singapore (2016)
Petras, I.: Fractional order feedback control of a DC motor. J. Electr. Eng. 60(3), 117–128 (2009)
Petras, I.: (2009). http://people.tuke.sk/igor.podlubny/usu/matlab/petras/dfod2.m
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Sierociuk, D., et al.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257(1), 2–11 (2015)
Stanisławski, R., Latawiec, K., Łukaniszyn, M.: A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractional-order difference. Math. Probl. Eng. 2015(1), 1–10 (2015)
Acknowledgments
This paper was sponsored by AGH UST project no 16.16.120.773.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Oprzędkiewicz, K. (2022). The Initial Problem for a Discrete, Scalar Fractional Order System. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques. AUTOMATION 2022. Advances in Intelligent Systems and Computing, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-031-03502-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-03502-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-03501-2
Online ISBN: 978-3-031-03502-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)