Skip to main content

Variability in the Height of Layers for Robotised WAAM Process

  • Conference paper
  • First Online:
Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques (AUTOMATION 2022)

Abstract

The dynamic development of industrial needs leads to the creation of innovative methods of manufacturing. In recent years, additive manufacturing, especially with the use of polymer material has arose in popularity. In heavy industry, there is a seek for manufacturing objects with high mechanical and temperature properties; met by WAAM technology. The following paper addresses the challenge of investigating geometry proprieties of welds. Moreover, the measurements are the base to develop automatic methods for creating objects with predictable shapes. For this purpose, welding trials with various parameters were conducted. These subsequently allowed finding optimal settings for additive manufacturing with the use of MIG-MAG technology. The study concerned an analysis of the geometry of the welds dependent on the height of the printouts with the WAAM method. The dependence between the number of layers and the general height of the object was modelled. There was a tendency to melt the previous layers of welds in the case of no breaks between the layers applied. On the contrary, a linear relationship between the number of layers applied and the height of the weld appeared while pausing between laying down subsequent layers. Hence, this proves that proper cooling is necessary for additive manufacturing with the use of this welding technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhler, M., Fiebig, S., Hensel, J., Dilger, K.: Wire and arc additive manufacturing of aluminum components. Metals (Basel) 9(5) (2019). https://doi.org/10.3390/met9050608

  2. Dinovitzer, M., Chen, X., Laliberte, J., Huang, X., Frei, H.: Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Addit. Manuf. 26, 138–146 (2019). https://doi.org/10.1016/j.addma.2018.12.013

    Article  Google Scholar 

  3. Vaidya, S., Ambad, P., Bhosle, S.: Industry 4.0 - a glimpse. Procedia Manuf. 20, 233–238 (2018). https://doi.org/10.1016/j.promfg.2018.02.034

    Article  Google Scholar 

  4. Zastrow, M.: The new 3D printing. Nature 578, 20–24 (2020)

    Article  Google Scholar 

  5. Rodrigues, T.A., Duarte, V., Miranda, R.M., Santos, T.G., Oliveira, J.P.: Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials (Basel) 12(7) (2019). https://doi.org/10.3390/ma12071121

  6. Knezović, N., Topić, A.: Wire and arc additive manufacturing (WAAM) – a new advance in manufacturing. In: Karabegović, I. (ed.) New Technologies, Development and Application, pp. 65–71. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-90893-9_7

    Chapter  Google Scholar 

  7. Priarone, P.C., Pagone, E., Martina, F., Catalano, A.R., Settineri, L.: Multi-criteria environmental and economic impact assessment of wire arc additive manufacturing. CIRP Ann. 69(1), 37–40 (2020). https://doi.org/10.1016/j.cirp.2020.04.010

    Article  Google Scholar 

  8. Horgar, A., Fostervoll, H., Nyhus, B., Ren, X., Eriksson, M., Akselsen, O.M.: Additive manufacturing using WAAM with AA5183 wire. J. Mater. Process. Technol. 259, 68–74 (2018). https://doi.org/10.1016/j.jmatprotec.2018.04.014

    Article  Google Scholar 

  9. Chabot, A., Laroche, N., Carcreff, E., Rauch, M., Hascoët, J.Y.: Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing. J. Intell. Manuf. 31(5), 1191–1201 (2020). https://doi.org/10.1007/s10845-019-01505-9

    Article  Google Scholar 

  10. Hassel, T., Carstensen, T.: Properties and anisotropy behaviour of a nickel base alloy material produced by robot-based wire and arc additive manufacturing. Weld. World 64(11), 1921–1931 (2020). https://doi.org/10.1007/s40194-020-00971-7

    Article  Google Scholar 

  11. Gierth, M., Henckell, P., Ali, Y., Scholl, J., Bergmann, J.P.: Wire arc additive manufacturing (WAAM) of aluminum alloy AlMg5Mn with energy-reduced gas metal arc welding (GMAW). Materials (Basel) 13(12), 1–22 (2020). https://doi.org/10.3390/ma13122671

    Article  Google Scholar 

  12. Prado-Cerqueira, J.L., et al.: Analysis of favorable process conditions for the manufacturing of thin-wall pieces of mild steel obtained by wire and arc additive manufacturing (WAAM). Materials (Basel) 11(8) (2018). https://doi.org/10.3390/ma11081449

  13. Eriksson, M., et al.: Additive manufacture of superduplex stainless steel using WAAM. In: MATEC Web of Conferences, vol. 188, August 2018. https://doi.org/10.1051/matecconf/201818803014

  14. Prado-Cerqueira, J.L., Diéguez, J.L., Camacho, A.M.: Preliminary development of a wire and arc additive manufacturing system (WAAM). Procedia Manuf. 13, 895–902 (2017). https://doi.org/10.1016/j.promfg.2017.09.154

    Article  Google Scholar 

  15. Stinson, H., Ward, R., Quinn, J., Mcgarrigle, C.: Comparison of properties and bead geometry in MIG and CMT single layer samples for WAAM applications (2021)

    Google Scholar 

  16. Ivántabernero, A.P., Álvarez, P., Suárez, A.: Study on arc welding processes for high deposition rate additive manufacturing. Procedia CIRP 68, 358–362 (2018). https://doi.org/10.1016/j.procir.2017.12.095

    Article  Google Scholar 

  17. Lopez, A., Bacelar, R., Pires, I., Santos, T.G., Sousa, J.P., Quintino, L.: Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Addit. Manuf. 21, 298–306 (2018). https://doi.org/10.1016/j.addma.2018.03.020

    Article  Google Scholar 

  18. Jin, W., Zhang, C., Jin, S., Tian, Y., Wellmann, D., Liu, W.: Wire arc additive manufacturing of stainless steels: a review. Appl. Sci. 10(5), 1563 (2020). https://doi.org/10.3390/app10051563

    Article  Google Scholar 

  19. Li, Y., Yu, S., Chen, Y., Yu, R., Shi, Y.: Wire and arc additive manufacturing of aluminum alloy lattice structure. J. Manuf. Process. 50, 510–519 (2020). https://doi.org/10.1016/j.jmapro.2019.12.049

    Article  Google Scholar 

  20. Wang, L., Xue, J., Wang, Q.: Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel. Mater. Sci. Eng. A 751, 183–190 (2019). https://doi.org/10.1016/j.msea.2019.02.078

    Article  Google Scholar 

  21. Dhinakaran, V., Ajith, J., Fathima Yasin Fahmidha, A., Jagadeesha, T., Sathish, T., Stalin, B.: Wire arc additive manufacturing (WAAM) process of nickel based superalloys-a review. Mater. Today: Proc. 21, 920–925 (2020). https://doi.org/10.1016/j.matpr.2019.08.159

  22. Szost, B.A., et al.: A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Mater. Des. 89, 559–567 (2016). https://doi.org/10.1016/j.matdes.2015.09.115

    Article  Google Scholar 

  23. Rodrigues, T.A., et al.: In-situ strengthening of a high strength low alloy steel during wire and arc additive manufacturing (WAAM). Addit. Manuf. 34, 101200 (2020). https://doi.org/10.1016/j.addma.2020.101200

    Article  Google Scholar 

  24. Ding, D., Pan, Z., Cuiuri, D., Li, H.: A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot. Comput. Integr. Manuf. 31, 101–110 (2015). https://doi.org/10.1016/j.rcim.2014.08.008

    Article  Google Scholar 

  25. Henckell, P., Gierth, M., Ali, Y., Reimann, J., Bergmann, J.P.: Reduction of energy input in wire arc additive manufacturing (WAAM) with gas metal arc welding (GMAW). Materials (Basel) 13(11) (2020). https://doi.org/10.3390/ma13112491

  26. Bandari, Y.K., Charrett, T.O.H., Michel, F., Ding, J., Williams, S.W., Tatam, R.P.: Compensation strategies for robotic motion errors for additive manufacturing (AM)

    Google Scholar 

  27. Kurc, K., et al.: Robotic machining in correlation with a 3D scanner. Mech. Mech. Eng. 24(1), 36–41 (2020). https://doi.org/10.2478/mme-2020-0003

    Article  MathSciNet  Google Scholar 

  28. Cheluszka, P.: Automation of coordinate measurements of mining machines working units with 3D scanning (in Polish). Pomiary Autom. Robot. 20(3), 33–42 (2016). https://doi.org/10.14313/PAR

  29. Liberini, M., et al.: Selection of optimal process parameters for wire arc additive manufacturing. Procedia CIRP 62, 470–474 (2017). https://doi.org/10.1016/j.procir.2016.06.124

    Article  Google Scholar 

  30. Xiong, J., Zhang, Y., Pi, Y.: Control of deposition height in WAAM using visual inspection of previous and current layers. J. Intell. Manuf. 32(8), 2209–2217 (2021). https://doi.org/10.1007/s10845-020-01634-6

    Article  Google Scholar 

  31. Wang, Y., et al.: Coordinated monitoring and control method of deposited layer width and reinforcement in WAAM process. J. Manuf. Process. 71, 306–316 (2021). https://doi.org/10.1016/j.jmapro.2021.09.033

    Article  Google Scholar 

  32. Kovšca, D., Starman, B., Ščetinec, A., Klobčar, D., Mole, N.: Advanced computational modelling of metallic wire-arc additive manufacturing. 13, 1–11 (2021)

    Google Scholar 

  33. Müller, J., et al.: Design and parameter identification of wire and arc additively manufactured (WAAM) steel bars for use in construction. Metals (Basel) 9(7) (2019). https://doi.org/10.3390/met9070725

  34. Singh, S.R., Khanna, P.: Wire arc additive manufacturing (WAAM): a new process to shape engineering materials. Mater. Today: Proc. 44, 118–128 (2021). https://doi.org/10.1016/j.matpr.2020.08.030

    Article  Google Scholar 

  35. Kozamernik, N., Bračun, D., Klobčar, D.: WAAM system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. Int. J. Adv. Manuf. Technol. 110(7–8), 1955–1968 (2020). https://doi.org/10.1007/s00170-020-05958-8

    Article  Google Scholar 

  36. Li, F., Chen, S., Shi, J., Zhao, Y., Tian, H.: Thermoelectric cooling-aided bead geometry regulation in wire and arc-based additive manufacturing of thin-walled structures. Appl. Sci. 8(2), 207 (2018). https://doi.org/10.3390/app8020207

    Article  Google Scholar 

  37. Rauch, M., Dorado, J.P., Hascoet, J.: A novel method for additive manufacturing of complex shape curved parts by using variable height layers. J. Mach. Eng. 21(3), 80–91 (2021)

    Google Scholar 

  38. Laghi, V., Palermo, M., Gasparini, G., Girelli, V.A., Trombetti, T.: Geometrical characterization of wire-and-arc additive manufactured steel element. Adv. Mater. Lett. 10(10), 695–699 (2019). https://doi.org/10.5185/amlett.2019.0019

    Article  Google Scholar 

Download references

Acknowledgements

The paper is based on the results of the “Development of ultra-lightweight design for volatile adapters attaching satellites to a rocket and with readiness their to produce by use Additive Manufacturing”, SPACE_Adaptors project (LIDER/45/0181/L-11/19/NCBR/2020), financed in 2021–2023, in the scope of scientific research and development works, by the National Center for Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julia Wilk or Piotr Falkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilk, J., Prokopiuk, N., Falkowski, P. (2022). Variability in the Height of Layers for Robotised WAAM Process. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques. AUTOMATION 2022. Advances in Intelligent Systems and Computing, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-031-03502-9_3

Download citation

Publish with us

Policies and ethics