Skip to main content

A Hybrid Parallel Algorithm With Multiple Improved Strategies

  • Conference paper
Intelligent Information Processing XI (IIP 2022)

Abstract

This paper proposes a novel hybrid parallel algorithm with multiple improved strategies. The whole population is divided into three subpopulations and each sub-population executes butterfly optimization algorithm, grey wolf optimization algorithm, and marine predator algorithm respectively. Meanwhile, they share information through three different communication strategies. And in order to improve the performance of the algorithm, the text uses the cubic chaotic mapping mechanism in the initialization stage. At the same time, the idea of adaptive parameter strategy is also introduced, so that some hyperparameters are changed along with the iteration. The results show that the algorithm can provide very competitive results, and is superior to the best algorithm in the literature on most test functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aziz, N.A.B.A., Mohemmed, A.W., Alias, M.Y.: A wireless sensor network coverage optimization algorithm based on particle swarm optimization and Voronoi diagram. In: 2009 International Conference on Networking, Sensing and Control, pp. 602–607 (2009)

    Google Scholar 

  2. Abdel-Basset, M., Mohamed, R., Chakrabortty, R.K., Ryan, M., Mirjalili, S.: New binary marine predators optimization algorithms for 0–1 knapsack problems. Comput. Ind. Eng. 151, 106949 (2021)

    Google Scholar 

  3. Abdel-Basset, M., Mohamed, R., Elhoseny, M., Chakrabortty, R.K., Ryan, M.: A hybrid covid-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy. IEEE Access 8, 79521–79540 (2020)

    Article  Google Scholar 

  4. Abdollahzadeh, S., Navimipour, N.J.: Deployment strategies in the wireless sensor network: a comprehensive review. Comput. Commun. 91, 1–16 (2016)

    Google Scholar 

  5. Arora, S., Singh, S.: An effective hybrid butterfly optimization algorithm with artificial bee colony for numerical optimization. Int. J. Interact. Multimedia Artif. Intell. 4(4), 14–21 (2017)

    Google Scholar 

  6. Arora, S., Singh, S.: An improved Butterfly Optimization Algorithm with chaos. J. Intell. Fuzzy Syst. 32(1), 1079–1088 (2017)

    Google Scholar 

  7. Arora, S., Singh, S.: Butterfly Optimization Algorithm: a novel approach for global optimization. Soft. Comput. 23(3), 715–734 (2018). https://doi.org/10.1007/s00500-018-3102-4

  8. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120–127 (2007)

    Google Scholar 

  9. Cuevas, E., Echavarría, A., Ramírez-Ortegón, M.A.: An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation. Appl. Intell. 40(2), 256–272 (2014)

    Article  Google Scholar 

  10. Cui, Z., et al.: A pigeon-inspired optimization algorithm for many-objective optimization problems. Sci. Chin. Inf. Sci. 62(7), 1–3 (2019). https://doi.org/10.1007/s11432-018-9729-5

  11. Du, Z.-G., Pan, T.-S., Pan, J.-S., Chu, S.-C.: QUasi-Affine TRansformation Evolutionary Algorithm for feature selection. In: Wu, T.-Y., Ni, S., Chu, S.-C., Chen, C.-H., Favorskaya, M. (eds.) Advances in Smart Vehicular Technology, Transportation, Communication and Applications. SIST, vol. 250, pp. 147–156. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-4039-1_14

  12. Duan, H., Qiao, P.: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 7(1), 24–37 (2014)

    Google Scholar 

  13. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016)

    Article  Google Scholar 

  14. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: a nature-inspired metaheuristic. Exp. Syst. Appl. 152, 113377 (2020)

    Google Scholar 

  15. Guo, B., Zhuang, Z., Pan, J.S., Chu, S.C.: Optimal design and simulation for PID controller using fractional-order fish migration optimization algorithm. IEEE Access 9, 8808–8819 (2021)

    Google Scholar 

  16. Hu, Y., et al.: A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm. Sci. Chin. Inf. Sci. 62(7), 1–17 (2019). https://doi.org/10.1007/s11432-018-9754-6

  17. Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. Mob. Netw. Appl. 10(4), 519–528 (2005)

    Google Scholar 

  18. Kan, T.W., Teng, C.H., Chou, W.S.: Applying qr code in augmented reality applications. In: Proceedings of the 8th International Conference on Virtual Reality Continuum and its Applications in Industry, pp. 253–257 (2009)

    Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  20. Khanduja, N., Bhushan, B.: Chaotic state of matter search with elite opposition based learning: a new hybrid metaheuristic algorithm. Optim. Control Appl. Meth. 2021, 1–16. (2021) https://doi.org/10.1002/oca.2810

  21. Li, Z., Lei, L.: Sensor node deployment in wireless sensor networks based on improved particle swarm optimization. In: 2009 International Conference on Applied Superconductivity and Electromagnetic Devices, pp. 215–217 (2009)

    Google Scholar 

  22. Mann, G.K., Hu, B.G., Gosine, R.G.: Analysis of direct action fuzzy PID controller structures. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(3), 371–388 (1999)

    Google Scholar 

  23. Masalha, F., Hirzallah, N., et al.: A students attendance system using QR code. Int. J. Adv. Comput. Sci. Appl. 5(3), 75–79 (2014)

    Google Scholar 

  24. Meng, Z., Chen, Y., Li, X., Yang, C., Zhong, Y.: Enhancing quasi-affine transformation evolution (QUATRE) with adaptation scheme on numerical optimization. Knowl. Based Syst. 197, 105908 (2020)

    Google Scholar 

  25. Meng, Z., Pan, J.S., Xu, H.: Quasi-affine transformation evolutionary (QUATRE) algorithm: a cooperative swarm based algorithm for global optimization. Knowl. Based Syst. 109, 104–121 (2016)

    Google Scholar 

  26. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  27. Mohamed, A.A.A., El-Gaafary, A.A., Mohamed, Y.S., Hemeida, A.M.: Multi-objective states of matter search algorithm for TCSC-based smart controller design. Electr. Power Syst. Res. 140, 874–885 (2016)

    Google Scholar 

  28. Niu, P., Niu, S., Chang, L., et al.: The defect of the grey wolf optimization algorithm and its verification method. Knowl. Based Syst. 171, 37–43 (2019)

    Google Scholar 

  29. Pan, J.S., Sun, X.X., Chu, S.C., Abraham, A., Yan, B.: Digital watermarking with improved SMS applied for QR code. Eng. Appl. Artif. Intell. 97, 104049 (2021)

    Google Scholar 

  30. Pan, J.-S., Tian, A.-Q., Chu, S.-C., Li, J.-B.: Improved binary pigeon-inspired optimization and its application for feature selection. Appl. Intell. 51(12), 8661–8679 (2021). https://doi.org/10.1007/s10489-021-02302-9

  31. Pan, J.S., Tsai, P.W., Liao, Y.B.: Fish migration optimization based on the fishy biology. In: 2010 4th International Conference on Genetic and Evolutionary Computing, pp. 783–786 (2010)

    Google Scholar 

  32. Pradhan, M., Roy, P.K., Pal, T.: Grey wolf optimization applied to economic load dispatch problems. Int. J. Electr. Power Energy Syst. 83, 325–334 (2016)

    Google Scholar 

  33. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control: PID controller design. Ind. Eng. Chem. Process Des. Dev. 25(1), 252–265 (1986)

    Google Scholar 

  34. Shi, Y., et al.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81–86. IEEE (2001)

    Google Scholar 

  35. Sung, T.W., Zhao, B., Zhang, X.: Quasi-affine transformation evolutionary with double excellent guidance. Wirel. Commun. Mob. Comput. 2021, 5591543 (2021)

    Google Scholar 

  36. Tang, K.S., Man, K.F., Chen, G., Kwong, S.: An optimal fuzzy PID controller. IEEE Trans. Ind. Electron. 48(4), 757–765 (2001)

    Google Scholar 

  37. Tiwari, S.: An introduction to QR code technology. In: 2016 international Conference on Information Technology (ICIT), pp. 39–44 (2016)

    Google Scholar 

  38. Wang, B., Lim, H.B., Ma, D.: A survey of movement strategies for improving network coverage in wireless sensor networks. Comput. Commun. 32(13–14), 1427–1436 (2009)

    Google Scholar 

  39. Yıldız, B.S., Yıldız, A.R., Albak, E.İ, Abderazek, H., Sait, S.M., Bureerat, S.: Butterfly optimization algorithm for optimum shape design of automobile suspension components. Mater. Test. 62(4), 365–370 (2020)

    Google Scholar 

  40. Zhang, M., Long, D., Qin, T., Yang, J.: A chaotic hybrid butterfly optimization algorithm with particle swarm optimization for high-dimensional optimization problems. Symmetry 12(11), 1800 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Chuan Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Cite this paper

Wang, T., Pan, JS., Song, PC., Chu, SC. (2022). A Hybrid Parallel Algorithm With Multiple Improved Strategies. In: Shi, Z., Zucker, JD., An, B. (eds) Intelligent Information Processing XI. IIP 2022. IFIP Advances in Information and Communication Technology, vol 643. Springer, Cham. https://doi.org/10.1007/978-3-031-03948-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-03948-5_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-03947-8

  • Online ISBN: 978-3-031-03948-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics