Skip to main content

PUBO\(_i\): A Tunable Benchmark with Variable Importance

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13222))

  • 594 Accesses

Abstract

In this work, we present the benchmark generator PUBO\(_i\), Polynomial Unconstrained Binary Optimization, that combines subproblems to create instances of pseudo-boolean optimization problems. Any mono-objective pseudoboolean functions including existing classical optimization problems can be expressed with Walsh functions. The benchmark generator can tune main features of problems such as problem dimension, non-linearity degree, and neutrality. Additionally, to be able to create instances with properties similar to those of real-like combinatorial optimization problems, the goal of PUBO\(_i\) is to introduce the notion of variable importance. Indeed, the importance of decision variables can be tuned using three benchmark parameters. In the version presented here, we consider four subproblems already used in Chook generator for benchmarking quantum computers and algorithms as a basis. We also present the impact of benchmark parameters using a fitness landscape analysis that empirically shows these parameters to significantly impact the variable importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Indeed, j pairs of symmetric local minima.

References

  1. Bartz-Beielstein, T., et al.: Benchmarking in optimization: Best practice and open issues. arXiv preprint arXiv:2007.03488 (2020)

  2. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB-a quadratic assignment problem library. J. Global Optim. 10(4), 391–403 (1997)

    Article  MathSciNet  Google Scholar 

  3. Carnell, R.: LHS: Latin hypercube samples, R package version 0.16 (2018)

    Google Scholar 

  4. Date, P., Patton, R., Schuman, C., Potok, T.: Efficiently embedding QUBO problems on adiabatic quantum computers. Quantum Inf. Process. 18(4), 1–31 (2019). https://doi.org/10.1007/s11128-019-2236-3

    Article  MATH  Google Scholar 

  5. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking discrete optimization heuristics with IOH profiler. Appl. Soft Comput. 88, 106207 (2020)

    Article  Google Scholar 

  6. Galluccio, A., Loebl, M., Vondrák, J.: Optimization via enumeration: a new algorithm for the max cut problem. Math. Program. 90(2), 273–290 (2001)

    Article  MathSciNet  Google Scholar 

  7. Glover, F., Hao, J.K., Kochenberger, G.: Polynomial unconstrained binary optimisation-part 1. Int. J. Metaheuristics 1(3), 232–256 (2011)

    Article  MathSciNet  Google Scholar 

  8. Hamze, F., Jacob, D.C., Ochoa, A.J., Perera, D., Wang, W., Katzgraber, H.G.: From near to eternity: spin-glass planting, tiling puzzles, and constraint-satisfaction problems. Phys. Rev. E 97(4), 043303 (2018)

    Article  Google Scholar 

  9. Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: GECCO, pp. 1689–1696 (2010)

    Google Scholar 

  10. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: A platform for comparing continuous optimizers in a black-box setting. Optim. Methods Softw. 36(1), 114–144 (2021)

    Article  MathSciNet  Google Scholar 

  11. Johnson, D.S., Trick, M.A.: Cliques, coloring, and satisfiability: second DIMACS implementation challenge, 11–13 October, 1993, vol. 26. Am. Math. Soc. (1996)

    Google Scholar 

  12. Leprêtre, F., et al.: Fitness landscapes analysis and adaptive algorithms design for traffic lights optimization on SIALAC benchmark. Appl. Soft Comput. 85, 105869 (2019)

    Article  Google Scholar 

  13. Lü, Z., Glover, F., Hao, J.K.: A hybrid metaheuristic approach to solving the UBQP problem. Eur. J. Oper. Res. 207(3), 1254–1262 (2010)

    Article  MathSciNet  Google Scholar 

  14. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

    Article  Google Scholar 

  15. Malan, K.M.: A survey of advances in landscape analysis for optimisation. Algorithms 14(2), 40 (2021)

    Article  MathSciNet  Google Scholar 

  16. Perera, D., et al.: Chook-a comprehensive suite for generating binary optimization problems with planted solutions. arXiv preprint arXiv:2005.14344 (2020)

  17. Sagawa, M., et al.: Learning variable importance to guide recombination. In: 2016 IEEE SSCI, pp. 1–7 (2016)

    Google Scholar 

  18. Sagawa, M., et al.: Learning variable importance to guide recombination on many-objective optimization. In: 6th IIAI-AAI, pp. 874–879. IEEE (2017)

    Google Scholar 

  19. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: a case study in RNA secondary structures. Proc. R. Soc. London. Ser. B. Biol. Sci. 255(1344), 279–284 (1994)

    Article  Google Scholar 

  20. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)

    Article  MathSciNet  Google Scholar 

  21. Tari, S., Basseur, M., Goëffon, A.: Sampled walk and binary fitness landscapes exploration. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoenauer, M. (eds.) EA 2017. LNCS, vol. 10764, pp. 47–57. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78133-4_4

    Chapter  Google Scholar 

  22. Tušar, T., Brockhoff, D., Hansen, N.: Mixed-integer benchmark problems for single-and bi-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 718–726 (2019)

    Google Scholar 

  23. Tušar, T., Brockhoff, D., Hansen, N., Auger, A.: COCO: the bi-objective black box optimization benchmarking (bbob-biobj) test suite. ArXiv e-prints (2016)

    Google Scholar 

  24. Verel, S., Derbel, B., Liefooghe, A., Aguirre, H., Tanaka, K.: A surrogate model based on Walsh decomposition for pseudo-Boolean functions. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 181–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_15

    Chapter  Google Scholar 

  25. Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45(1), 5 (1923)

    Article  MathSciNet  Google Scholar 

  26. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63(5), 325–336 (1990)

    Article  Google Scholar 

  27. Wood, S.: MGCV: GAMs in R. Generalized Additive Mixed Models Using MGCV and LME4 (2012)

    Google Scholar 

  28. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the Sixth International Congress of Genetics, vol. 1, pp. 356–366 (1932)

    Google Scholar 

  29. Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M.: Things are not always linear; additive modelling. In: Mixed effects models and extensions in ecology with R. SBH, pp. 35–69. Springer, New York (2009). https://doi.org/10.1007/978-0-387-87458-6_3

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

Experiments presented in this paper were carried out using the CALCULCO computing platform, supported by SCoSI/ULCO (Service COmmun du Système d’Information de l’Université du Littoral Côte d’Opale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Tari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tari, S., Verel, S., Omidvar, M. (2022). PUBO\(_i\): A Tunable Benchmark with Variable Importance. In: Pérez Cáceres, L., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2022. Lecture Notes in Computer Science, vol 13222. Springer, Cham. https://doi.org/10.1007/978-3-031-04148-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04148-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04147-1

  • Online ISBN: 978-3-031-04148-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics