Skip to main content

SemanticStyleGAN: Generative Image Inpainting Using Style-Based Generator

  • Conference paper
  • First Online:
ICT Innovations 2021. Digital Transformation (ICT Innovations 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1521))

Included in the following conference series:

  • 348 Accesses

Abstract

Image inpainting, a task of reconstructing missing or corrupted image regions, has a great potential to advance the fields of image editing and computational photography. Despite being a difficult problem, the researchers have made headway into the field thanks to the progress in representation learning with very deep convolutional neural networks and the successes in generation of realistic images by using Generative Adversarial Networks (GANs). To avoid the problems of generating blurry and distorted regions as well adding artefacts, a new model for image inpainting is proposed in this paper. The GAN-based architecture incorporates two frameworks, the model for semantic image inpainting and the models for style transfer, which have been pointed out to be successful in previous research. Our model was evaluated on the Flickr-Faces-HQ dataset. The results are promising and point out that using a combination of various GAN-based technologies could improve the performance on the task of image inpainting. Directions for future research are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/NVlabs/ffhq-dataset.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. (Proc. SIGGRAPH) 28(3), 24 (2009)

    Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH 2000, pp. 417–424. ACM Press/Addison-Wesley Publishing Co., USA (2000). https://doi.org/10.1145/344779.344972

  4. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of SIGGRAPH 2001, pp. 341–346 (2001)

    Google Scholar 

  5. Esedoglu, S.: Digital inpainting based on the Mumford-Shah-Euler image model. Eur. J. Appl. Math. 13(4), 353–370 (2003). https://doi.org/10.1017/S0956792502004904

    Article  MathSciNet  MATH  Google Scholar 

  6. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2, pp. 2672–2680. MIT Press, Cambridge (2014)

    Google Scholar 

  7. Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Trans. Graph. (SIGGRAPH 2007) 26(3) (2007)

    Google Scholar 

  8. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6629–6640. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  9. Iskakov, K.: Semi-parametric image inpainting. arXiv preprint arXiv:1807.02855 (2018). https://arxiv.org/abs/1807.02855

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  14. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: EdgeConnect: structure guided image inpainting using edge prediction. In: The IEEE International Conference on Computer Vision (ICCV) Workshops, October 2019

    Google Scholar 

  15. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  16. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003). https://doi.org/10.1145/882262.882269

    Article  Google Scholar 

  17. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016). http://arxiv.org/abs/1511.06434

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556

  19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  20. Yeh, R.A., Chen, C., Yian Lim, T., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5485–5493 (2017)

    Google Scholar 

  21. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was partially financed by the Faculty of Computer Science and Engineering at the “Ss. Cyril and Methodius” University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darko Filipovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filipovski, D., Gievska, S. (2022). SemanticStyleGAN: Generative Image Inpainting Using Style-Based Generator. In: Antovski, L., Armenski, G. (eds) ICT Innovations 2021. Digital Transformation. ICT Innovations 2021. Communications in Computer and Information Science, vol 1521. Springer, Cham. https://doi.org/10.1007/978-3-031-04206-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04206-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04205-8

  • Online ISBN: 978-3-031-04206-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics