Skip to main content

Calibration of Traffic Simulations Using Simulated Annealing and GPS Navigation Records

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2021)

Abstract

A traffic simulation tool provides a virtual environment to efficiently analyze current traffic conditions and quickly measure the impact of changes to either transport infrastructure or driving rules. Realizing the full potential of traffic simulations depends on correct parameter setting. In this work, we propose a method to calibrate traffic simulations using available transportation data from Costa Rica. The data comes from Global Position System (GPS) navigation records that only show the traffic speed in different sectors. The calibration algorithm aims to solve the inverse problem of finding the actual traffic flows in all routes to accurately reproduce real traffic conditions. We managed to calibrate the simulations for four case studies and leveraged our program to design solutions that ease traffic conditions in those scenarios. The impact and applications of this work are plenty. First, additional calibration techniques can be explored. Second, available data for more general settings can be exploited. Third, our tool can be integrated as a useful resource for analysis and decision making in urban mobility studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carson, Y., Maria, A.: Simulation optimization: methods and applications. In: Winter Simulation Conference Proceedings, pp. 118–126 (1997)

    Google Scholar 

  2. Carter, M.W., Price, C.C., Rabadi, G.: Operations Research. A Practical Introduction, 2nd edn. CRC Press, Boca Raton (2019)

    Google Scholar 

  3. Celik, Y., Karadeniz, A.T.: Urban traffic optimization with real time intelligence intersection traffic light system. Int. J. Intell. Syst. Appl. Eng. 3(6), 214–219 (2018)

    Article  Google Scholar 

  4. Colegio Federado de Ingenieros y Arquitectos de Costa Rica, CFIA: Congestionamiento del flujo vehicular en la gran Área metropolitana de san josÉ: recopilación, análisis y posicionamiento (2005)

    Google Scholar 

  5. Cubero-Corella, M., Durán-Monge, E., Díaz, W., Meneses, E., Gómez-Campos, S.: Modelling road saturation dynamics on a complex transportation network based on GPS navigation software data. In: Crespo-Mariño, J.L., Meneses-Rojas, E. (eds.) CARLA 2019. CCIS, vol. 1087, pp. 136–149. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41005-6_10

    Chapter  Google Scholar 

  6. Daamen, W., Buisson, C., Hoogendoorn, S.P.: Traffic Simulation and Data: Validation Methods and Applications. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  7. de la Nación, P.E., Gómez Campos, S., Cubero, M.: Capítulo 7 : Patrones de la movilidad en tiempos de pandemia: una aproximación con técnicas del “big data” [Informe Estado de la Nación 2020], pp. 231–254 (2020)

    Google Scholar 

  8. Foundation., A.S.: Apache parquet. https://parquet.apache.org/documentation/latest/. Accessed 30 Apr 2021

  9. Gómez Campos, S., Cubero, M.: Congestión vial en los cantones de Costa Rica (2019)

    Google Scholar 

  10. Kheterpal, N., Parvate, K., Wu, C., Kreidieh, A., Vinitsky, E., Bayen, A.: Flow: deep reinforcement learning for control in SUMO. In: SUMO 2018- Simulating Autonomous and Intermodal Transport Systems, vol. 2, pp. 134–115 (2018)

    Google Scholar 

  11. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3), 128–138 (2012)

    Google Scholar 

  12. Krajzewicz, D., Hertkorn, G., Wagner, P., Rössel, C.: An example of microscopic car models validation using the open source traffic simulation SUMO. In: Proceedings of Simulation in Industry 14th European Simulation Symposium, pp. 318–322 (2002)

    Google Scholar 

  13. Krajzewicz, D., Hertkorn, G., Wagner, P., Rössel, C.: SUMO (Simulation of Urban MObility) an open-source traffic simulation. In: Symposium on Simulation, pp. 63–68 (2002)

    Google Scholar 

  14. Li, S.B., Wang, G.M., Wang, T., Ren, H.L.: Research on the method of traffic organization and optimization based on dynamic traffic flow model. Discrete Dyn. Nat. Soc. 2017 (2017)

    Google Scholar 

  15. Ozbay, K., Mudigonda, S., Morgul, E., Yang, H.: Big data and the calibration and validation of traffic simulation models. Transp. Res. Board 2015 (2015)

    Google Scholar 

  16. Pardalos, P.M., Du, D.Z., Graham, R.L.: Handbook of Combinatorial Optimization, vol. 1–5 (2013)

    Google Scholar 

  17. Paternina Arboleda, C.D., Montoya Torres, J.R., Fábregas Ariza, A.: Simulation-optimization using a reinforcement learning approach. In: Proceedings - Winter Simulation Conference, pp. 1376–1383 (2008)

    Google Scholar 

  18. Pebesma, E., Bivand, R.S.: Classes and Methods for Spatial Data: the sp Package (2015)

    Google Scholar 

  19. Programa Estado de la Nación: Informe 2018, Estado de la Nación en desarrollo humano sostenible, chap. 6. Transporte y movilidad: retos en favor del desarrollo urbano. Estado de la Nación (2018)

    Google Scholar 

  20. Wang, L.F., Shi, L.Y.: Simulation optimization: a review on theory and applications. Zidonghua Xuebao/Acta Automatica Sinica 39(11), 1957–1968 (2013)

    Google Scholar 

  21. Zambrano, J.L., Calafate, C.T., Soler, D., Cano, J.C., Manzoni, P.: Using real traffic data for ITS simulation: procedure and validation. In: 2016 International IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress, pp. 161–170 (2016)

    Google Scholar 

  22. Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a machine allocation on Kabré supercomputer at the Costa Rica National High Technology Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gamboa-Venegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gamboa-Venegas, C., Gómez-Campos, S., Meneses, E. (2022). Calibration of Traffic Simulations Using Simulated Annealing and GPS Navigation Records. In: Lossio-Ventura, J.A., et al. Information Management and Big Data. SIMBig 2021. Communications in Computer and Information Science, vol 1577. Springer, Cham. https://doi.org/10.1007/978-3-031-04447-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04447-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04446-5

  • Online ISBN: 978-3-031-04447-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics