Skip to main content

Prediction of Soil Saturated Electrical Conductivity by Statistical Learning

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2021)

Abstract

The diagnosis of saline soils requires the analysis of electrical conductivity in saturated soil paste extract. Its analysis is expensive, tedious, and highly time-consuming, therefore, commercial laboratories analyze the aqueous extract in a 1:1 ratio and then transform the value into saturation extract using equations. The research aimed to calibrate a statistical learning method to predict the electrical conductivity adapted to Peruvian conditions. For this, we apply different models from highly interpretable to black-box, such as multiple linear model, generalized additive models, Bayesian additive regression tree, extreme gradient boosting trees, and neural networks. In general, the models with beast predictive power were neural network and extreme gradient boosting trees, and the beast interpretable was Bayesian additive regression trees. The generalized additive models present the best balance between prediction power and interpretability with low application on extremely salty soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboukila, E.F., Norton, J.B.: Estimation of saturated soil paste salinity from soil-water extracts. Soil Sci. 182(3), 107–113 (2017). https://doi.org/10.1097/ss.0000000000000197

    Article  Google Scholar 

  2. Benke, K.K., Norng, S., Robinson, N.J., Chia, K., Rees, D.B., Hopley, J.: Development of pedotransfer functions by machine learning for prediction of soil electrical conductivity and organic carbon content. Geoderma 366 (2020). https://doi.org/10.1016/j.geoderma.2020.114210

  3. Bleich, J., Kapelner, A., George, E.I., Jensen, S.T.: Variable selection for BART: an application to gene regulation. Ann. Appl. Stat. 8(3) (2014). https://doi.org/10.1214/14-aoas755

  4. Buuren, S.v., Groothuis-Oudshoorn, K.: mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45(3) (2011). https://doi.org/10.18637/jss.v045.i03

  5. Bzdok, D., Altman, N., Krzywinski, M.: Statistics versus machine learning. Nat. Meth. 15(4), 233–234 (2018). https://doi.org/10.1038/nmeth.4642

    Article  Google Scholar 

  6. Camacho-Sandoval, J.: Coeficiente de concordancia para variables continuas. Acta Médica Costarricense 50, 211–212 (2008)

    Article  Google Scholar 

  7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection. ACM Comput. Surv. 41(3), 1–58 (2009). https://doi.org/10.1145/1541880.1541882

    Article  Google Scholar 

  8. Chi, C.M., Wang, Z.C.: Characterizing salt-affected soils of songnen plain using saturated paste and 1:5 soil-to-water extraction methods. Arid Land Res. Manage. 24(1), 1–11 (2010). https://doi.org/10.1080/15324980903439362

    Article  Google Scholar 

  9. Chipman, H.A., George, E.I., McCulloch, R.E.: BART: Bayesian additive regression trees. Ann. Appl. Stat. 4(1) (2010). https://doi.org/10.1214/09-aoas285

  10. Daliakopoulos, I.N., Tsanis, I.K., Koutroulis, A., Kourgialas, N.N., Varouchakis, A.E., Karatzas, G.P., Ritsema, C.J.: The threat of soil salinity: a European scale review. Sci Total Environ. 573, 727–739 (2016). https://doi.org/10.1016/j.scitotenv.2016.08.177

    Article  Google Scholar 

  11. El hasini, S., Halima, O.I., El. Azzouzi, M., Douaik, A., Azim, K., Zouahri, A.: Organic and inorganic remediation of soils affected by salinity in the sebkha of sed el mesjoune - marrakech (morocco). Soil Tillage Res. 193, 153–160 (2019). https://doi.org/10.1016/j.still.2019.06.003

  12. FAO: Guidelines for soil de-scription. FAO, Rome (2006)

    Google Scholar 

  13. Gamboa, N.R., Marchese, A.B., Tavares Corrêa, C.H.: Salinization in Peruvian North Coast Soils: Case Study in San Pedro de Lloc, book section Chapter 7, pp. 141–159 (2021). https://doi.org/10.1007/978-3-030-52592-7

  14. Hogg, T.J., Henry, J.L.: Comparison of 1:1 and 1:2 suspensions and extracts with the saturation extract in estimating salinity in saskatchewan soils. Canadian J. Soil Sci. 64(4), 699–704 (1984). https://doi.org/10.4141/cjss84-069

    Article  Google Scholar 

  15. INEI: 4to censo nacional agropecuario (17/08/2021 2012). http://censos.inei.gob.pe/cenagro/tabulados/

  16. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. Springer Texts in Statistics. Springer (2021). https://doi.org/10.1007/978-1-4614-7138-7

  17. Kapelner, A., Bleich, J.: bartMachine: machine learning with Bayesian additive regression trees. J. Stat. Softw. 70(4) (2016). https://doi.org/10.18637/jss.v070.i04

  18. Kargas, G., Chatzigiakoumis, I., Kollias, A., Spiliotis, D., Massas, I., Kerkides, P.: Soil salinity assessment using saturated paste and mass soil: water 1:1 and 1:5 ratios extracts. Water 10(11) (2018). https://doi.org/10.3390/w10111589

  19. Kuhn, M.: Building predictive models in rusing the caret package. J. Stat. Softw. 28(5) (2008). https://doi.org/10.18637/jss.v028.i05

  20. Landon, J.R.: Booker Tropical Soil Manual (2014). https://doi.org/10.4324/9781315846842

    Article  Google Scholar 

  21. Legros, J.: Major Soil Groups of the World: Ecology, Genesis, Properties and Classification. CRC Press, Boca Raton (2012)

    Google Scholar 

  22. Lin, L.I.K.: A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1) (1989). https://doi.org/10.2307/2532051

  23. Ma, G., Ding, J., Han, L., Zhang, Z., Ran, S.: Digital mapping of soil salinization based on sentinel-1 and sentinel-2 data combined with machine learning algorithms. Regional Sustain. 2(2), 177–188 (2021). https://doi.org/10.1016/j.regsus.2021.06.001

    Article  Google Scholar 

  24. Matthees, H.L., et al.: Predicting soil electrical conductivity of the saturation extract from a 1:1 soil to water ratio. Commun. Soil Sci. Plant Anal. 48(18), 2148–2154 (2017). https://doi.org/10.1080/00103624.2017.1407780

  25. Mayer, M.: outForest: multivariate outlier detection and replacement (2021). https://CRAN.R-project.org/package=outForest

  26. Miura, K.: Nitrogen and Phosphorus Nutrition Under Salinity Stress, book section Chapter 16, pp. 425–441 (2013). https://doi.org/10.1007/978-1-4614-4747-4

  27. Omuto, C., Vargas, R., El Mobara, A., Mohamed, N., Viatkin, K., Yigini, Y.: Maping of salt-affected soils: technical manual. FAO, Rome (2020)

    Google Scholar 

  28. Ozkan, H., Ekinci, H., Yigini, Y., Yuksel, O.: Comparison of four soil salinity extraction methods. In: 18th International Soil Meeting on Soil Sustaining Life on Earth, Managing Soil and Technology, pp. 22–26 (2006)

    Google Scholar 

  29. McBratney, A.B., Minasny, B., Stockmann, U. (eds.): Pedometrics. PSS, Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63439-5

  30. RcoreTeam: R: A language and environment for statistical computing (2021). https://www.R-project.org/

  31. Richards, L.: Diagnosis and improvement of saline and alkaline soils. United States Department of Agriculture, Washington (1954)

    Google Scholar 

  32. Sonmez, S., Buyuktas, D., Okturen, F., Citak, S.: Assessment of different soil to water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma 144(1–2), 361–369 (2008). https://doi.org/10.1016/j.geoderma.2007.12.005

  33. Sposito, G.: The Chemistry of Soils. Oxford University Press, Oxford, 2 edn. (2008)

    Google Scholar 

  34. Wadoux, A.M.J.C., Malone, B., Minasny, B., Fajardo, M., McBratney, A.B.: Estimating soil properties and classes from spectra, book section Chapter 9, pp. 165–214. Progress in Soil Science (2021). https://doi.org/10.1007/978-3-030-64896-1

  35. Weil, R., Brady, N.: The Nature and Properties of Soils. Pearson, London, 15 edn. (2017)

    Google Scholar 

  36. Zaman, M., Shahid, S.A., Heng, L.: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques (2018). https://doi.org/10.1007/978-3-319-96190-3

  37. Zhang, H., Schroder, J.L., Pittman, J.J., Wang, J.J., Payton, M.E.: Soil salinity using saturated paste and 1:1 soil to water extracts. Soil Sci. Soc. Am. J. 69(4), 1146–1151 (2005). https://doi.org/10.2136/sssaj2004.0267

    Article  Google Scholar 

  38. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Mestanza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mestanza, C., Chicchon, M., Gutiérrez, P., Hurtado, L., Beltrán, C. (2022). Prediction of Soil Saturated Electrical Conductivity by Statistical Learning. In: Lossio-Ventura, J.A., et al. Information Management and Big Data. SIMBig 2021. Communications in Computer and Information Science, vol 1577. Springer, Cham. https://doi.org/10.1007/978-3-031-04447-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04447-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04446-5

  • Online ISBN: 978-3-031-04447-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics