Skip to main content

Improving Model Inference via W-Set Reduction

  • Conference paper
  • First Online:
Testing Software and Systems (ICTSS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13045))

Included in the following conference series:

Abstract

Model inference is a form of systematic testing of black-box systems while learning at the same time a model of their behaviour. In this paper, we study the impact of W-set reduction in hW-inference, an inference algorithm for learning models from scratch. hW-inference relies on progressively extending a sequence h into a homing sequence for the system, and a set W of separating sequences into a fully characterizing set. Like most other inference algorithms, it elaborates intermediate conjectures which can be refined through counterexamples provided by an oracle. We observed that the size of the W-set could vary by an order of magnitude when using random counterexamples. Consequently, the length of the test suite is hugely impacted by the size variation of the W-set. Whereas the original hW-inference algorithm keeps increasing the W-set until it is characterizing, we propose reassessing the set and pruning it based on intermediate conjectures. This can lead to a shorter test suite to thoroughly learn a model. We assess the impact of reduction methods on a self-scanning system as used in supermarkets, where the model we get is a finite state machine with 121 states and over 1800 transitions, leading to an order of magnitude of around a million events for the trace length of the inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, the 121 states of the FSM can be characterized by a W-set with as few as 4 sequences totalling 11 inputs or 3 sequences totalling 23 inputs (and it might even not be minimal).

  2. 2.

    The SIMPA software can be downloaded from:

    http://vasco.imag.fr/tools/SIMPA or directly from

    https://gricad-gitlab.univ-grenoble-alpes.fr/SIMPA/SIMPA.

  3. 3.

    http://automata.cs.ru.nl/Overview#Mealybenchmarks.

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 2, 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  2. Bennaceur, A., Hähnle, R., Meinke, K. (eds.): Machine Learning for Dynamic Software Analysis: Potentials and Limits – International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24–27, 2016, Revised Papers, Volume 11026 of Lecture Notes in Computer Science. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96562-8

    Book  Google Scholar 

  3. Bremond, N., Groz, R.: Case studies in learning models and testing without reset. In: 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops, AMOST 2019, ICST Workshops 2019, Xi’an, China, 22 April 2019, pp. 40–45 (2019)

    Google Scholar 

  4. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991)

    Article  Google Scholar 

  5. Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  6. Groz, R., Bremond, N., Simao, A.: Using adaptive sequences for learning non-resettable FSMs. In: Unold, O., Dyrka, W., Wieczorek, W. (eds.) Proceedings of the 14th International Conference on Grammatical Inference 2018, Volume 93 of Proceedings of Machine Learning Research, pp. 30–43. PMLR, February 2019

    Google Scholar 

  7. Groz, R., Bremond, N., Simao, A., Oriat, C.: \(hW\)-inference: a heuristic approach to retrieve models through black box testing. J. Syst. Softw. 159, 110426 (2020)

    Article  Google Scholar 

  8. Irfan, M.N., Oriat, C., Groz, R.: Angluin style finite state machine inference with non-optimal counterexamples. In: MIIT, pp. 11–19. ACM, New York (2010)

    Google Scholar 

  9. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  10. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - a survey. Proc. IEEE 84(8), 1090–1123 (1996)

    Article  Google Scholar 

  11. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies (AM-34), vol. 34, pp. 129–154. Princeton University Press (1956)

    Google Scholar 

  12. Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, University of Dortmund (2003)

    Google Scholar 

  13. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed Systems. IAICT, vol. 28, pp. 225–240. Springer, Boston (1999). https://doi.org/10.1007/978-0-387-35578-8_13

    Chapter  Google Scholar 

  14. Petrenko, A., Li, K., Groz, R., Hossen, K., Oriat, C.: Inferring approximated models for systems engineering. In: HASE 2014, Miami, Florida, USA, pp. 249–253 (2014)

    Google Scholar 

  15. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_14

    Chapter  Google Scholar 

  16. Utting, M., Legeard, B., Dadeau, F., Tamagnan, F., Bouquet, F.: Identifying and generating missing tests using machine learning on execution traces. In: 2020 IEEE International Conference On Artificial Intelligence Testing (AITest), pp. 83–90 (2020)

    Google Scholar 

  17. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)

    Article  Google Scholar 

  18. Vasilievskii, M.P.: Failure diagnosis of automata. Cybern. Syst. Anal. 9, 653–665 (1973). https://doi.org/10.1007/BF01068590

    Article  Google Scholar 

Download references

Acknowledgments

The internship of the first author was funded by the French National Research Agency: ANR PHILAE project (ANR-18-CE25-0013). The second and the fifth authors were funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: 2013/07375-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Oriat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halm, M., Braz, R.S., Groz, R., Oriat, C., Simao, A. (2022). Improving Model Inference via W-Set Reduction. In: Clark, D., Menendez, H., Cavalli, A.R. (eds) Testing Software and Systems. ICTSS 2021. Lecture Notes in Computer Science, vol 13045. Springer, Cham. https://doi.org/10.1007/978-3-031-04673-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04673-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04672-8

  • Online ISBN: 978-3-031-04673-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics