Abstract
Cloud-native is a recent paradigm for web-based service-oriented applications. Because it covers a wide range of concepts and lacks a commonly accepted definition, evaluating software architectures according to it is difficult. Therefore, a quality model is presented, aligned with the Quamoco meta model and based on both practitioner books and scientific literature. It focuses on the design time and considers multiple quality attributes in relation. This initial quality model together with an evaluation of already existing measures is intended as a basis for approaches aiming to evaluate cloud-native application architectures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adkins, H., Beyer, B., Blankinship, P., Lewandowski, P., Oprea, A., Stubblefield, A.: Building Secure and Reliable Systems. O’Reilly, Sebastopol (2020)
Alonso, J., Stefanidis, K., et al.: Decide: an extended DevOps framework for multi-cloud applications. In: 3rd ICCBDC, pp. 43–48 (2019)
Apel, S., Hertrampf, F., Späthe, S.: Towards a metrics-based software quality rating for a microservice architecture. In: Lüke, K.-H., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2019. CCIS, vol. 1041, pp. 205–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22482-0_15
Arundel, J., Domingus, J.: Cloud Native DevOps with Kubernetes. O’Reilly, Sebastopol (2019)
Bastani, K., Long, J.: Cloud Native Java. O’Reilly, Sebastopol (2017)
Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintainability of service-and microservice-based systems: a literature review. In: 27th IWSM, pp. 107–115. ACM (2017)
Cardarelli, M., Iovino, L., Francesco, P.D., Salle, A.D., Malavolta, I., Lago, P.: An extensible data-driven approach for evaluating the quality of microservice architectures. In: 34th ACM/SIGAPP Symposium on Applied Computing, ACM Press (2019)
CNCF: CNCF Cloud Native Definition v1.0. (2018). https://github.com/cncf/toc/blob/master/DEFINITION.md
CNCF: CNCF Survey 2020 (2020). https://www.cncf.io/wp-content/uploads/2020/12/CNCF_Survey_Report_2020.pdf
Davis, C.: Cloud Native Patterns. Manning, Shelter Island (2019)
Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice architectures: a metric and tool-based approach. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 74–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9_8
Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns. Springer, Vienna (2014). https://doi.org/10.1007/978-3-7091-1568-8
Gannon, D., Barga, R., Sundaresan, N.: Cloud-native applications. IEEE Cloud Comput. 4(5), 16–21 (2017)
Garrison, J., Nova, K.: Cloud Native Infrastructure. O’Reilly, Sebastopol (2017)
Goniwada, S.R.: Cloud Native Architecture and Design Patterns. In: Cloud Native Architecture and Design, pp. 127–187. Apress, Berkeley (2022). https://doi.org/10.1007/978-1-4842-7226-8_4
Guerron, X., Abrahao, S., Insfran, E., Fernandez-Diego, M., Gonzalez-Ladron-De-Guevara, F.: A taxonomy of quality metrics for cloud services. IEEE Access 8, 131461–131498 (2020)
Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: A metrics suite for evaluating flexibility and complexity in service oriented architectures. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 41–52. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01247-1_5
Ibryam, B., Huß, R.: Kubernetes Patterns. O’Reilly, Sebastopol (2020)
Indrasiri, K., Suhothayan, S.: Design Patterns for Cloud Native Applications. O’Reilly, Sebastopol (2021)
ISO/IEC: ISO/IEC 25000 Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) (2014). https://www.iso.org/standard/64764.html
Kratzke, N., Quint, P.C.: Understanding cloud-native applications after 10 years of cloud computing - a systematic mapping study. JSS 126, 1–16 (2017)
Lehmann, M., Sandnes, F.E.: A framework for evaluating continuous microservice delivery strategies. In: 2nd ICC, ACM (2017)
Li, S., et al.: Understanding and addressing quality attributes of microservices architecture: a systematic literature review. Inf. Softw. Technol. 131, 106449 (2021)
Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., Geiger, S.: Metrics for assessing architecture conformance to microservice architecture patterns and practices. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol. 12571, pp. 580–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65310-1_42
Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P.: Knowledge based quality-driven architecture design and evaluation. IST 52(6), 577–601 (2010)
Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud software. ACM Trans. Internet Technol. 18(2), 1–23 (2018)
RedHat: Understanding cloud-native applications (2018). https://www.redhat.com/en/topics/cloud-native-apps
Reznik, P., Dobson, J., Gienow, M.: Cloud Native Transformation. O’Reilly, Sebastopol (2019)
Richardson, C.: Microservices Patterns. 1 edn. Manning, Shelter Island (2019)
Ruecker, B.: Practical Process Automation. O’Reilly, Sebastopol (2021)
Scholl, B., Swanson, T., Jausovec, P.: Cloud Native. O’Reilly, Sebastopol (2019)
Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., Bohnert, T.M.: Self-managing cloud-native applications: design, implementation, and experience. Future Gener. Comput. Syst. 72, 165–179 (2017)
VMwareTanzu(Pivotal): Cloud-Native Applications: Ship Faster, Reduce Risk, Grow Your Business (2020). https://tanzu.vmware.com/de/cloud-native
Wagner, S., et al.: Operationalised product quality models and assessment: the Quamoco approach. IST 62, 101–123 (2015)
Wagner, S., et al.: The quamoco quality meta-model. techreport TUM-I128, Technische Universität München, Institut für Informatik (2012)
Wurster, M., Breitenbücher, U., Brogi, A., Leymann, F., Soldani, J.: Cloud-native Deploy-ability: an analysis of required features of deployment technologies to deploy arbitrary cloud-native applications. In: 10th CLOSER. Scitepress (2020)
Zdun, U., Navarro, E., Leymann, F.: Ensuring and assessing architecture conformance to microservice decomposition patterns. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 411–429. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_29
Zimmermann, O.: Metrics for architectural synthesis and evaluation - requirements and compilation by viewpoint. an industrial experience report. In: IEEE/ACM 2nd International Workshop on Software Architecture and Metrics, IEEE (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Lichtenthäler, R., Wirtz, G. (2022). Towards a Quality Model for Cloud-native Applications. In: Montesi, F., Papadopoulos, G.A., Zimmermann, W. (eds) Service-Oriented and Cloud Computing. ESOCC 2022. Lecture Notes in Computer Science, vol 13226. Springer, Cham. https://doi.org/10.1007/978-3-031-04718-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-04718-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04717-6
Online ISBN: 978-3-031-04718-3
eBook Packages: Computer ScienceComputer Science (R0)