Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Luecken, M.D., Theis, F.J.: Current best practices in single-cell RNA-SEQ analysis: a tutorial. Mol. Syst. Biol. 15(6), e8746 (2019)
Potter, S.S.: Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 14(8), 479–492, e8746 (2018)
Brennecke, P., et al.: Accounting for technical noise in single-cell RNA-SEQ experiments. Nat. Methods 10(11), 1093 (2013)
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qian, K., Fu, S., Li, H., Li, W.V. (2022). A Novel Matrix Factorization Model for Interpreting Single-Cell Gene Expression from Biologically Heterogeneous Data. In: Pe'er, I. (eds) Research in Computational Molecular Biology. RECOMB 2022. Lecture Notes in Computer Science(), vol 13278. Springer, Cham. https://doi.org/10.1007/978-3-031-04749-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-04749-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04748-0
Online ISBN: 978-3-031-04749-7
eBook Packages: Computer ScienceComputer Science (R0)