Skip to main content

Performance Evaluation of ECOC Considering Estimated Probability of Binary Classifiers

  • Conference paper
  • First Online:
Information Systems and Technologies (WorldCIST 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 469))

Included in the following conference series:

Abstract

Error-Correcting Output Coding (ECOC) is a method for constructing a multi-valued classifier using a combination of the given binary classifiers. ECOC is said to be able to estimate the correct category by other binary classifiers even if the output of some binary classifiers is incorrect based on the framework of the coding theory. Although it is experimentally known that this method performs well on real data, a theoretical analysis of the classification accuracy for ECOC has yet to be conducted. In this study, we evaluate the superiority of a code word table in showing the combinations of binary classifiers of ECOC that have been experimentally demonstrated. In other words, we analytically evaluate how the estimation of the categories is influenced by the estimated posterior probability, which is the output of the binary classifier, as well as by the structure of constructing the code word table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For \(f_j\), we write \(f_j(\boldsymbol{x})\) for the discriminant function that produces the output the binary classifier for the input data \(\boldsymbol{x}\).

  2. 2.

    Under this assumption, the worst-case error rate \(\frac{M - 1}{M}\) in the M-valued classification is assumed to be included.

  3. 3.

    This is a strong assumption in that the variance of the error term is the same for 1-vs-(M-1) and 2-vs-(M-2).

References

  1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Berlekamp, E.R.: Algebraic Coding Theory, revised edn. World Scientific, Hackensack (2015)

    Google Scholar 

  3. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1994)

    Article  Google Scholar 

  4. Escalera, S., Pujol, O., Radeva, P.: Error-correcting output codes library. J. Mach. Learn. Res. 11, 661–664 (2010)

    MATH  Google Scholar 

  5. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  6. Goto, M., Kobayashi, M.: Introductory Pattern Recognition and Machine Learning. CORONA Publishing Co., Ltd. (2014). (in Japanese)

    Google Scholar 

  7. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer-Verlag, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  8. Lang, K.: NewsWeeder: learning to filter netnews. In: Machine Learning Proceedings 1995, pp. 331–339. Elsevier (1995)

    Google Scholar 

  9. Đoković, D.Ž, Golubitsky, O., Kotsireas, I.S.: Some new orders of Hadamard and skew-Hadamard matrices. J. Comb. Des. 22(6), 270–277 (2014)

    Article  MathSciNet  Google Scholar 

  10. Passerini, A., Pontil, M., Frasconi, P.: New results on error correcting output codes of kernel machines. IEEE Trans. Neural Netw. 15(1), 45–54 (2004)

    Article  Google Scholar 

  11. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Rocha, A., Goldenstein, S.K.: Multiclass from binary: expanding one-versus-all, one-versus-one and ECOC-based approaches. IEEE Tran. Neural Netw. Learn. Syst. 25(2), 289–302 (2014). https://doi.org/10.1109/TNNLS.2013.2274735

    Article  Google Scholar 

  13. Vapnik, V.N., Vapnik, V.A.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  14. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. In: ESANN, vol. 99, pp. 219–224 (1999)

    Google Scholar 

  15. Yamaguchi, N., Ishii, N.: An upper bound of estimation error of a posteriori probability in ECOC classifiers, IEICE Technical Report. Neurocomputing 102(730), 149–154 (2003). (in Japanese)

    Google Scholar 

  16. Yin, A.R., Xie, X., Kuang, J.: Using Hadamard ECOC in multi-class problems based on SVM. In: Ninth European Conference on Speech Communication and Technology (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gendo Kumoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumoi, G., Yagi, H., Kobayashi, M., Goto, M., Hirasawa, S. (2022). Performance Evaluation of ECOC Considering Estimated Probability of Binary Classifiers. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F. (eds) Information Systems and Technologies. WorldCIST 2022. Lecture Notes in Networks and Systems, vol 469. Springer, Cham. https://doi.org/10.1007/978-3-031-04819-7_37

Download citation

Publish with us

Policies and ethics