Skip to main content

Deep Detection Models for Measuring Epidermal Bladder Cells

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2022)

Abstract

Epidermal bladder cells (EBC) are specialized structures of halophyte plants that accumulate salt and other metabolites, and are thought to be involved in salinity tolerance, as well as in UV-B protection, drought and other stresses tolerance. However, the role of the EBC size, density or volume remains to be confirmed since few studies have addressed the relevance of these traits. This is due to the fact that those measurements are mostly carried out manually. In this work, we have tackled this problem by conducting a statistical analysis of several deep learning algorithms to detect EBC on images. From such a study, we have obtained a model, trained with the YOLOv4 algorithm, that achieves a F1-score of 91.80%. Moreover, we have proved the reliability of this model to other varieties and organs using different datasets than the ones used for training the model. In order to facilitate the use of the YOLO model, we have developed LabelGlandula, an open-source and simple-to-use graphical user interface that employs the YOLO model. The tool presented in this work will help to understand the functioning of EBC and the molecular mechanisms of EBC formation and salt accumulation, and to transfer this knowledge to crops one day.

This work was partially supported by Ministerio de Economía y Competitividad [MTM2017-88804-P], Ministerio de Ciencia e Innovación [PID2020-115225RB-I00] and GRUPO Gobierno Vasco-IT1022-16. Ángela Casado-García has a FPI grant from Community of La Rioja 2020, and Aitor Agirresarobe is the recipient of a predoctoral fellowship from the Gobierno Vasco (Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarie, S., et al.: Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Exp. Bot. 58, 1957–1967 (2007)

    Article  Google Scholar 

  2. Arvidsson, I., et al.: Generalization of prostate cancer classification for multiple sites using deep learning. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 191–194. IEEE (2018). https://doi.org/10.1109/ISBI.2018.8363552

  3. Barkla, B.J., Vera-Estrella, R.: Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Front. Plant Sci. 6, 435 (2015)

    Article  Google Scholar 

  4. Bochkovskiy, A., et al.: YOLOv4: optimal speed and accuracy of object detection. CoRR abs/2004.10934 (2020)

    Google Scholar 

  5. Casado-García, A., et al.: LabelStoma: a tool for stomata detection based on the YOLO algorithm. Comput. Electron. Agric. 178, 105751 (2020). https://doi.org/10.1016/j.compag.2020.105751

  6. Chu, P., Li, Z., Lammers, K., Lu, R., Liu, X.: Deep learning-based apple detection using a suppression mask R-CNN. Pattern Recogn. Lett. 147, 206–211 (2021). https://doi.org/10.1016/j.patrec.2021.04.022. https://www.sciencedirect.com/science/article/pii/S0167865521001616

  7. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Academic Press, Cambridge (1969)

    Google Scholar 

  8. Cohen, J.: Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Measur. 33, 107–112 (1973)

    Google Scholar 

  9. Cynthia, S.T., et al.: Automated detection of plant diseases using image processing and faster R-CNN algorithm. In: Proceedings of 2019 International Conference on Sustainable Technologies for Industry 4.0. STI 2019 (2019). https://doi.org/10.1109/STI47673.2019.9068092

  10. Dassanayake, M., Larkin, J.C.: Making plants break a sweat: the structure, function, and evolution of plant salt glands. Front. Plant Sci. 8, 406 (2017)

    Google Scholar 

  11. Garcia, S., et al.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180, 2044–2064 (2010)

    Google Scholar 

  12. Holm, O.S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  13. Imamura, T., et al.: A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa. Commun. Biol. 3, 513 (2020)

    Google Scholar 

  14. Isayenkov, S.V.: Genetic sources for the development of salt tolerance in crops. Plant Growth Regul. 89(1), 1–17 (2019). https://doi.org/10.1007/s10725-019-00519-w

    Article  Google Scholar 

  15. Kiani-Pouya, A., et al.: Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant Cell Environ. 40, 1900–1915 (2017)

    Google Scholar 

  16. Kiani-Pouya, A., et al.: A large-scale screening of quinoa accessions reveals an important role of epidermal bladder cells and stomatal patterning in salinity tolerance. Environ. Exp. Bot. 168, 103885 (2019)

    Google Scholar 

  17. Levene, H.: chap. Robust tests for equality of variances. In: Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, pp. 278–292. Stanford University Press, USA (1960)

    Google Scholar 

  18. Orsini, F., et al.: Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct. Plant Biol. 38, 818–831 (2011)

    Article  Google Scholar 

  19. Pratama, M.T., et al.: Deep learning-based object detection for crop monitoring in soybean fields. In: Proceedings of 2020 International Joint Conference on Neural Networks. IJCNN 2020 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207400

  20. Razavian, A.S., Azizpour, H., Sullivan, J., et al.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPRW 2014, pp. 512–519 (2014)

    Google Scholar 

  21. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR abs/1804.02767 (2018)

    Google Scholar 

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  23. Shabala, L., et al.: Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol. Plant. 146, 26–38 (2012)

    Article  Google Scholar 

  24. Shabala, S.: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 112, 1209–1221 (2013)

    Article  Google Scholar 

  25. Shapiron, S.S., Wilk, M.B.: An analysis for variance test for normality (complete samples). Inf. Sci. 180, 2044–2064 (1965)

    Google Scholar 

  26. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, London (2011)

    MATH  Google Scholar 

  27. Simard, P., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the International Conference on Document Analysis and Recognition. ICDAR 2003, vol. 2, pp. 958–964 (2003)

    Google Scholar 

  28. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR 2020 (2020). https://doi.org/10.1109/CVPR42600.2020.01079

  29. Tian, Y., et al.: Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 157, 417–426 (2019). https://doi.org/10.1016/j.compag.2019.01.012

  30. Tian, Z., et al.: FCOS: fully convolutional one-stage object detection. CoRR abs/1904.01355 (2019)

    Google Scholar 

  31. Tzutalin, D.: LabelImg (2015). https://github.com/tzutalin/labelImg

  32. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. CoRR abs/1903.00621 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Casado-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casado-García, A., Agirresarobe, A., Miranda-Apodaca, J., Heras, J., Pérez-López, U. (2022). Deep Detection Models for Measuring Epidermal Bladder Cells. In: Pinho, A.J., Georgieva, P., Teixeira, L.F., Sánchez, J.A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2022. Lecture Notes in Computer Science, vol 13256. Springer, Cham. https://doi.org/10.1007/978-3-031-04881-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04881-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04880-7

  • Online ISBN: 978-3-031-04881-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics