Skip to main content

Lesion-Based Chest Radiography Image Retrieval for Explainability in Pathology Detection

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2022)

Abstract

Chest radiography is one of the most common medical imaging modalites. However, chest radiography interpretation is a complex task that requires significant expertise. As such, the development of automatic systems for pathology detection has been proposed in literature, particularly using deep learning. However, these techniques suffer from a lack of explainability, which hinders their adoption in clinical scenarios. One technique commonly used by radiologists to support and explain decisions is to search for cases with similar findings for direct comparison. However, this process is extremely time-consuming and can be prone to confirmation bias. Automatic image retrieval methods have been proposed in literature but typically extract features from the whole image, failing to focus on the lesion in which the radiologist is interested. In order to overcome these issues, a novel framework LXIR for lesion-based image retrieval is proposed in this study, based on a state of the art object detection framework (YOLOv5) for the detection of relevant lesions as well as feature representation of those lesions. It is shown that the proposed method can successfully identify lesions and extract features which accurately describe high-order characteristics of each lesion, allowing to retrieve lesions of the same pathological class. Furthermore, it is show that in comparison to SSIM-based retrieval, a classical perceptual metric, and random retrieval of lesions, the proposed method retrieves the most relevant lesions 81% of times, according to the evaluation of two independent radiologists, in comparison to 42% of times by SSIM.

This work was funded by the ERDF - European Regional Development Fund, through the Programa Operacional Regional do Norte (NORTE 2020) and by National Funds through the FCT - Portuguese Foundation for Science and Technology, I.P. within the scope of the CMU Portugal Program (NORTE-01-0247-FEDER-045905) and UIDB/50014/2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansal, G.: Digital radiography. A comparison with modern conventional imaging. Postgrad. Med. J. 82(969), 425–428 (2006)

    Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Chen, B., Li, J., Guo, X., Lu, G.: DualCheXNet: dual asymmetric feature learning for thoracic disease classification in chest X-rays. Biomed. Signal Process. Control 53, 101554 (2019)

    Google Scholar 

  4. Cowan, I.A., MacDonald, S.L., Floyd, R.A.: Measuring and managing radiologist workload: measuring radiologist reporting times using data from a Radiology Information System. J. Med. Imaging Radiat. Oncol. 57(5), 558–566 (2013)

    Google Scholar 

  5. Gündel, S., Grbic, S., Georgescu, B., Liu, S., Maier, A., Comaniciu, D.: Learning to recognize abnormalities in chest X-rays with location-aware dense networks. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 757–765. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_88

  6. Hofmanninger, J., Langs, G.: Mapping visual features to semantic profiles for retrieval in medical imaging. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 457–465 (2015)

    Google Scholar 

  7. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)

    Google Scholar 

  8. Jocher, G., et al.: Ultralytics/YOLOv5 (2021). https://github.com/ultralytics/yolov5

  9. Kumar, P., Grewal, M., Srivastava, M.M.: Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 546–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_62

  10. Li, Z., et al.: Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299 (2018)

    Google Scholar 

  11. Li, Z., Zhang, X., Müller, H., Zhang, S.: Large-scale retrieval for medical image analytics: a comprehensive review. Med. Image Anal. 43, 66–84 (2018)

    Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Nguyen, H.Q., et al.: VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations. arXiv preprint arXiv:2012.15029 (2020)

  15. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  16. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  17. Shin, H.C., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O.: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1930–1943 (2012)

    Article  Google Scholar 

  18. Silva, W., Poellinger, A., Cardoso, J.S., Reyes, M.: Interpretability-guided content-based medical image retrieval. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 305–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_30

  19. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020)

    Google Scholar 

  20. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  22. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 589–596. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_72

  23. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Pedrosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pedrosa, J., Sousa, P., Silva, J., Mendonça, A.M., Campilho, A. (2022). Lesion-Based Chest Radiography Image Retrieval for Explainability in Pathology Detection. In: Pinho, A.J., Georgieva, P., Teixeira, L.F., Sánchez, J.A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2022. Lecture Notes in Computer Science, vol 13256. Springer, Cham. https://doi.org/10.1007/978-3-031-04881-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04881-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04880-7

  • Online ISBN: 978-3-031-04881-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics